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◮ A fixed number of discrete and autonomous agents.

◮ Local rules are applied to each agent.

◮ An environment.

◮ Collective behaviors emerge as a result of local interaction
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Requirements for simulating complex system using ABMS

◮ Simulations must offer realistic results.

◮ It means simulations whose results are valid in reality, and
which can also be used for prediction or to explain some
phenomenon.

◮ Therefore, these simulations require reliable results through
statistical approaches.

◮ Moreover, they have a high computational complexity because
thousands of agents model them, their higher level of
parameters and their behavior complexity. Thus, this kind of
simulation requires a long execution time.
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Introduction

Research question

◮ How to generalize our HPC techniques and approaches for
agent-based models that demand high performance solutions?
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Fish schooling

Huth and Wissel model
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Ant colony

Wilensky model
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ABMs case study HPC approaches Care HPS

Shopping agent

Gilbert and Troitzsch Model - simplest version
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Shopping agent

Gilbert and Troitzsch model - add another behavior
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Shopping agent

Gilbert and Troitzsch model - smartest agents
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Assessment of Aedes Aegypti pupal productivity

Assessment of Aedes Aegypti pupal productivity model
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async_mpi.cc

Fish School 
Simulator

communication.cc

Message passing via MPI

◮ MPI Isend

◮ MPI Irecv
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Communication patterns

Implementation

async_mpi.cc

Fish School 
Simulator

communication.cc

sync_mpi.cc

Message passing via MPI

◮ MPI Send

◮ MPI Recv
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Communication patterns

Implementation

async_mpi.cc

Fish School 
Simulator

communication.cc

sync_mpi.cc sync_bsp.cc

Bulk-synchronous parallel via BSPonMPI

◮ BSPonMPI is a small communications library for BSP which
consists of only 20 basic operations on top of MPI.
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HPC approaches: Strip partitioning

Ant colony environment Environment partitioned
with sharing objects

Environment partitioned
with no sharing objects



Strip partitioning

Partitioning Scheme
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HPC approaches: Hybrid strip partitioning approach

◮ We extended the strip partitioning algorithm.

◮ We decrease the idleness of these cores through the creation
of OpenMP threads which are used to compute the extra
agents that are in other cores.

◮ This partitioning checks the proportion of the quantity of
agents inside a strip and dynamically creates a number of
threads.
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HPC approaches: Optimal run length for simulations

◮ In simulations the results usually come from a stochastic
process.

◮ How to compare these solutions since the results are not
deterministic?

◮ Consequently how to guarantee that the output results are
statistically trusted?

◮ We apply a statistical approach in order to define the optimal
run length for simulations.
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ABMs case study HPC approaches Care HPS

Optimal run length for simulations

Method steps

1 Identify the steady state

2 Identify the run length

Identify the non significant correlation lag size
Make a batch ten times the size of the lag
Make the steady state replication run length ten batches long

3 Replication analysis

Ensure that the number of replication is enough
Determine if the means are statistically significantly different
from the others
Identify which means are different
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Distributed memory data structure



Shared memory data structure
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Methodology for application area user



Methodology for HPC expert



Care HPS architecture



Several scenarios can be represented



ABMs case study HPC approaches Care HPS

Care HPS as a scientific instrument

Design and programming issues

Object-oriented design

◮ Design pattern

45 / 103



ABMs case study HPC approaches Care HPS

Care HPS as a scientific instrument

Design and programming issues

Object-oriented design

◮ Design pattern

45 / 103



ABMs case study HPC approaches Care HPS

Care HPS as a scientific instrument

Design and programming issues

Object-oriented design

◮ Design pattern

Object-oriented programming

◮ Inheritance

◮ Polymorphism

◮ Interface

45 / 103



ABMs case study HPC approaches Care HPS

Care HPS as a scientific instrument

Design and programming issues

Object-oriented design

◮ Design pattern

Object-oriented programming

◮ Inheritance

◮ Polymorphism

◮ Interface

45 / 103



ABMs case study HPC approaches Care HPS

Care HPS as a scientific instrument

Design and programming issues

Object-oriented design

◮ Design pattern

Object-oriented programming

◮ Inheritance

◮ Polymorphism

◮ Interface

45 / 103



ABMs case study HPC approaches Care HPS

Care HPS as a scientific instrument

Design and programming issues

Object-oriented design

◮ Design pattern

Object-oriented programming

◮ Inheritance

◮ Polymorphism

◮ Interface

45 / 103



Creating an environment for the fish

p d s f i s h ∗ PDS FISH=NULL ;
ABM fish∗ ABM=NULL ;
environment* ENV=NULL;
PDS FISH = new p d s f i s h ( ) ;
ABM = PDS FISH−>createABM ( ) ;

/∗∗ Crea t e s an env i ronment wi th a
p l an ( ax + by + cz + d = 0) d e f i n e d by
equa t i on : 2∗x − 13∗ y + 5 ∗/

ENV = PDS FISH → createEnvironment(new linear plan( 2,-13,0,5));

/∗∗ The u s e r can c r e a t e how many o b j e c t s i n s i d e o f
the env i ronment tha t a r e r e q u i r e d . ∗/
/∗∗ Code tha t c r e a t e s o t h e r o b j e c t s i n s i d e o f
the env i ronment d e f i n e d by the equa t i on : 2∗y−3 ∗/

// ENV → createObject(new linear plan(0,2,0,-3)); //



Implements the interaction with environment

vec to r<o b j e c t∗> ob j e n v ;
o b j e n v = ENV−>ge tOb j e c t s ( ) ;
f o r ( v ec to r<o b j e c t ∗> : : i t e r a t o r ob=ob j e n v . beg i n ( ) ;

ob!= ob j e n v . end ( ) ;
ob++)

i f ( (*ob)→check collision( th i s−>g e t p o s i t i o n ( ) ,
th i s−>g e t v e l o c i t y ( ) ,
MAXIMUM VISION RANGE) )

this→repulsion(*this);
}



Creating the partitioning class

c l a s s p a r t i t i o n i n g s t r i p h y b r i d : pub l i c
p a r t i t i o n i n g s t r i p {

pub l i c :
// Con t ru c to r methods

// Ove r r i d e the ex e cu t e method
vo id e x e cu t e ( i n t ) ;

} ;



Defining the partitioning strategy

// he r e goes o t h e r the f a c t o r y methods o f the model c l a s s .

p a r t i t i o n i n g ∗ mode l ant : : f a c t o r y p a r t i t i o n i n g ( ){
re tu rn new partitioning strip hybrid() ;

}
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Results Publications

Verification of Pupal productivity model

Results: Verification of containers productivity

Objective

Comparative between the container pupal productivity with
reference to the average of the percentage of pupae per container
obtained from the proposed model.

Data and parameters

Number of simulations 1500

Days simulated 100

Measure analyzed Containers productivity %
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Verification of containers productivity
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Results Publications

Verification of Pupal productivity model

Results: Container pupal productivity

Objective

Present the effects of consider the pupal productivity issue in the
number of pupae per container.

Data and parameters

Number of simulations 1500

Days simulated 100

Measure analyzed
Number of pupal per containers
ln() scale.
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Container pupal productivity
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Results Publications

Verification of Pupal productivity model

Results: What-if

Objective

Hypothetical situation where a health agent changes the model
parameters in order to simulate actions for decisions made.

Data and parameters

Number of simulations 1500

Days simulated 100

Measure analyzed Number of infected person
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Results Publications

Verification of Pupal productivity model

Results: Area of the mosquito actuation.

Objective

Emergent behavior of the mosquitoes.

Data and parameters

Number of simulations 1500

Days simulated 100

Measure analyzed radius of flight
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Area of the mosquito actuation.



Area of the mosquito actuation.

Francisco Borges, Albert Gutierrez-Milla, Remo Suppi, Emilio Luque,
Marylene de Brito Arduino. An Agent-Based Model for Assessment of

Aedes Aegypti Pupal Productivity. WSC 2015. (CORE B)
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Results Publications

HPC techniques

Results: Communication patterns

Objective

Speedups comparison of the communication strategies:
asynchronous, synchronous BSP, and synchronous MPI.

Data and parameters

ABM Fish schooling

Number of agents 131K, 262K and 524K

Number of cores 2, 4, 8, 16, 32 and 64

Measure analyzed Speedup
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Speedup of each communication strategy

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24

2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64

Sp
ee

du
p

Number of cores x Number of fishes

Speedup by number of fishes and cores

Asynchronous
Synchronous MPI
Synchronous BSP

524288 fishes262144 fishes131072 fishes



Results Publications

HPC techniques

Results: Communication patterns

Objective

Computing time and communication time of communication
strategies.

Data and parameters

ABM Fish schooling

Number of agents 524K

Number of cores 16, 32 and 64

Measure analyzed Computing and communication time (s)
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Individual-Oriented Fish School Simulations. Procedia Computer
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HPC techniques

Results: Hybrid cluster-based partitioning

Objective

Total execution time comparison between the partitioning
approaches: Pure MPI and Hybrid.

Data and parameters

ABM Fish schooling

Number of agents 131K

Number of cores 32, 64, 128, 256 and 512

Number of threads No threads, 8 and 16.

Measure analyzed Execution time (s)

65 / 103



Total execution time comparison between the MPI and the

MPI+OpenMP
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HPC techniques

Results: Hybrid cluster-based partitioning

Objective

Scalability of the hybrid version.

Data and parameters

ABM Fish schooling

Number of agents 262K

Number of cores 32, 64, 128, 256 and 512

Number of threads 8

Measure analyzed Execution time (s)
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Scalability of the hybrid version by using 8 threads per MPI

process

 2000

 3000

 4000

 5000

 6000

 7000

Ti
m

e 
in

 s
ec

on
ds

 Number of cores

Total execution time 
 Simulation of 262,144 individuals

5
7
8
6
.5

4

4
8
1
0
.8

5 4
0
2
7
.1

5

3
4
4
3
.0

0

MPI+OpenMP version by using 8 threads

2
7
3
7
.9

9

512 cores256 cores128 cores64 cores32 cores



Results Publications

HPC techniques

Results: Hybrid cluster-based partitioning

Objective

Total execution time comparison between the MPI and the
MPI+OpenMP versions by using 512 cores.

Data and parameters

ABM Fish schooling

Number of agents 131k, 262K, 524k

Number of cores 512

Number of threads 8

Measure analyzed Execution time (s)
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Total execution time comparison between the MPI and the

MPI+OpenMP versions by using 512 cores
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HPC techniques

Results: Strip partitioning

Objective

Total execution time average and objective function of each
partitioning strategies.

Data and parameters

ABM Ant colony

Number of agents 10k

Number of cores 64

Measure analyzed Execution time (s)
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Total execution time average and objective function of the

partitioning strategies
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HPC techniques

Results: Strip partitioning

Objective

Comparison of total volume bytes of the worst and best strategies
with heat maps.

Data and parameters

ABM Ant colony

Number of agents 10k

Number of cores 64

Strategies best and worst

Measure analyzed Total volume data
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Comparison of total volume bytes with heat maps

(a1) H-FI-M0 (b1) V-PMC-M2

(a2) H-FI-M0 (b2) V-PMC-M2
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HPC techniques

Results: Strip partitioning

Objective

Communication and computing time of the worst and best
strategies.

Data and parameters

ABM Ant colony

Number of agents 10k

Number of cores 64

Strategies best and worst

Measure analyzed Execution time (s)
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Francisco Borges, Albert Gutierrez-Milla, Remo Suppi, Emilio Luque.
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HPC techniques

Results: Hybrid Strip partitioning

Objective

Total execution time of pure MPI and Hybrid strip partitioning
algorithm.

Data and parameters

ABM Ant colony

Number of agents 1k, 2.5k, 5k, 10k

Number of cores 64

Number of threads No threads, [2..8]

Measure analyzed Execution time (s)
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Total execution time of pure MPI and Hybrid strip

partitioning algorithm
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HPC techniques

Results: Hybrid Strip partitioning

Objective

Total execution of pure MPI and hybrid strip partitioning
algorithm. Agents distributed uniformly throughout the
environment

Data and parameters

ABM Ant colony

Number of agents 10k

Number of cores 64

Number of threads
No threads; [2..8] threads
dynamically created.

Measure analyzed Execution time (s)
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Total execution of pure MPI and hybrid strip partitioning

algorithm. Agents distributed uniformly throughout the

environment.
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Care HPS features

Results: Agent layer

Objective

ABMS tools must be able to model agent rules and behaviors. So,
this model can create collective and emergent behavior. It is
important that these tools can reflect the interaction among agents

Data and parameters

ABM Shopping agent

Number of agents 10

Number of cores 1

Size of list product 10

Number of stores 12

Measure analyzed Number of ticks
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Ticks of Gilbert and Troitzsch Netlogo version and Care

HPS
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Care HPS features

Results: Environment layer

Objective

(1) Able to represent an environment and its objects using a math
approach. (2) Enables the interaction between agents and the
objects of the environment. (3) Enables the representation of
simple rules in agents, and these simple rules can generate a
collective behavior after agent interactions.

Data and parameters

ABM Fish Schooling

Number of agents 8k

Number of cores 2

Analyzed
Interaction between agent and
environment.
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Fish repulsion behavior to avoid the collision. This

experimentation was executed in two cores using 8192

agents
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Care HPS scalability

Results: Care HPS scalability

Objective

Present the scalability of Care HPS.

Data and parameters

ABM Shopping agent

Number of agents 50K

Number of cores 1, 2, 4, 8, 16, 32, 64 and 128

Measure analyzed Execution time (s)
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Scalability of Buyer Version 3 with 50000 agents in 50000

steps
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Care HPS scalability

Results: Care HPS scalability

Objective

Present the scalability of Care HPS.

Data and parameters

ABM Shopping agent

Number of agents 200K and 250K

Number of cores 64, 128, 192 and 256

Measure analyzed Execution time (s)
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Scalability of Buyer Version 3 in 50000 steps to 200k and

250k agents executed in 64, 128, 192 and 256 cores
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Francisco Borges, Albert Gutierrez-Milla, Emilio Luque, Remo Suppi.
Care HPS: A High Performance Simulation Tool for Parallel and

Distributed Agent-Based Modeling. FGCS 2016. (Q1 Impact factor of
2.786).
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Emilio Luque. Simulació de evacuaciones multitudinarias
basadas en modelos orientados al individuo. Actas de las
XXV Jornadas de Paralelismo, Valladolid, 17-19 Septiembre
2014.

◮ Albert Gutierrez-Milla, Francisco Borges, Remo Suppi,
Emilio Luque. Crowd Dynamics Modeling and Collision
Avoidance with OpenMP. WSC 2015. (CORE B)

◮ Albert Gutierrez-Milla, Francisco Borges, Remo Suppi,
Emilio Luque. Crowd turbulence with ABM and Verlet
Integration on GPU cards. ICCS 2016. (CORE A)



◮ Albert Gutierrez-Milla, Francisco Borges, Remo Suppi,
Emilio Luque. Individual-Oriented Model Crowd
Evacuations Distributed Simulation. ICCS 2014. (CORE
A)

◮ Albert Gutierrez-Milla, Francisco Borges, Remo Suppi,
Emilio Luque. Crowd evacuations SaaS: an ABM
approach. ICCS 2014. (CORE A)

◮ Albert Gutierrez-Milla, Francisco Borges, Remo Suppi,
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Conclusion Future work

◮ We introduce Care High Performance Simulation (HPS).

◮ The initial idea of Care HPS comes up as a methodology to
support our research group, with the aim of answering the
following question: how can we generalize our HPC
techniques and approaches for agent-based models that
demand high performance?

◮ Care HPS is a methodology to execute agent-based modeling
and simulation in a parallel and distributed architecture.
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Conclusion Future work

◮ Care HPS is a scientific instrument to do research on HPC for
agent-based models that demand high performance solutions.
Care HPS enables both:

◮ application area researchers to gain knowledge about the
system under study using ABMs that require high performance
computing solutions. This is possible because Care HPS offers
well-defined and simple interfaces for this type of user in which
all HPC complexity is hidden;

◮ and, HPC expert users to develop approaches of high
performance parallel and distributed simulation for ABM
problems without high programming effort. Care HPS was
projected using good object-oriented design practices which
allow for the extension and reuse of the main HPS features.
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Conclusion Future work

◮ As part of our main findings and contributions, we present
Care HPS, and we show through experimentation that Care
HPS meets its objective and can be used as a scientific
instrument for agent-based modeling that requires high
performance parallel and distributed simulations.
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Conclusion Future work

◮ Currently, we are doing a comprehensive study of the ABM for
the assessment of Aedes Aegypti pupal productivity.

◮ There are still room for improvement: components, models,
HPC strategies, features.
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