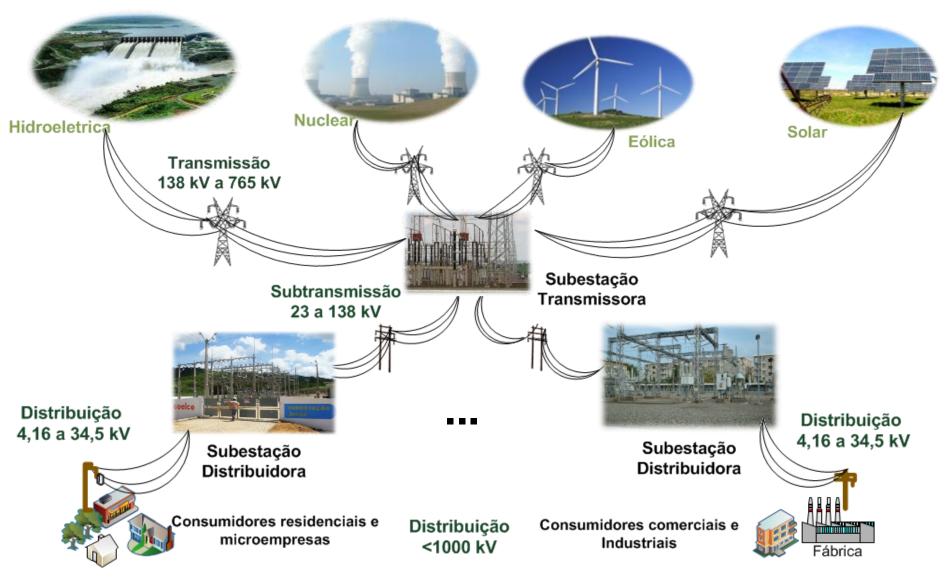
III Ciclo de palestras do GSORT

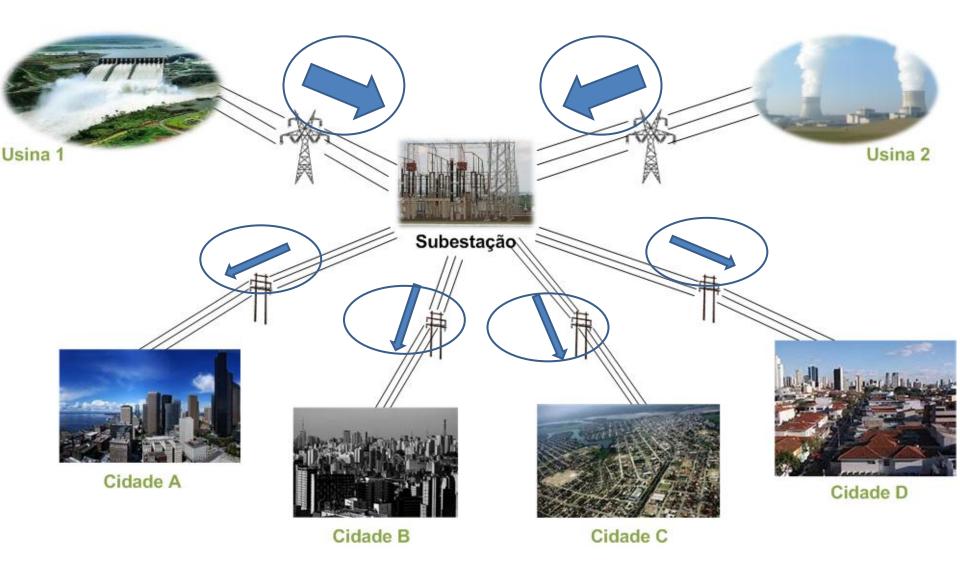
Smart Grids - Desafios e Oportunidades de Pesquisa em Computação

Flávio G. Calhau


Prof. Dr. Romildo Martins

Prof. Dr. Joberto Martins

Agenda


- Introdução Smart Grid
 - Conceito e Percepção em Computação
 - Visão Tecnológica
 - Aspectos Técnicos
 - Requisitos
 - Computação (TIC) no Contexto Smart Grids
- Microgrids Geração de Energia Distribuída
- □ IEC 61850
- Desafios
- Oportunidade de Pesquisas
- Conclusão

□ Subestações de Geração − 12 a 24kV

Problemas

- O controle do consumo ainda é manual;
- Baixo nível de automação no controle dos dispositivos da rede;
- Geração muito distante dos grandes centros consumidores;
- Dados pouco detalhados sobre o consumo de energia;
- Dificuldade de integração de novas demandas (como por exemplo, veículos elétricos);
- Dificuldade para integração de fontes de energia de pequeno e médio porte
- Baixa qualidade na energia entregue ao consumidor, devido a falhas nos sistemas de transmissão e de distribuição.

Modernização da Rede Elétrica

- Redução do impacto das falhas no sistema elétrico
- Acidentes, eventos naturais e falhas sempre ocorrerão

Soluções

- Identificação rápida de falhas
- Minimizar impacto das falhas reduzindo áreas atingidas

Consequências

- Minimizar prejuízos
- Evitar multas por serviço não prestado
- Evitar as consequências do serviço não prestado
- Indústria, comércio, serviços e residências

- Modernização da Rede Elétrica
 - Integração com fontes alternativas
 - Energia eólica
 - Energia solar
 - Roteamento energético mais eficiente
 - Redução de Custos
 - Redução do Impacto Ambiental
 - Redução do impacto das falhas, devido à redundância na geração

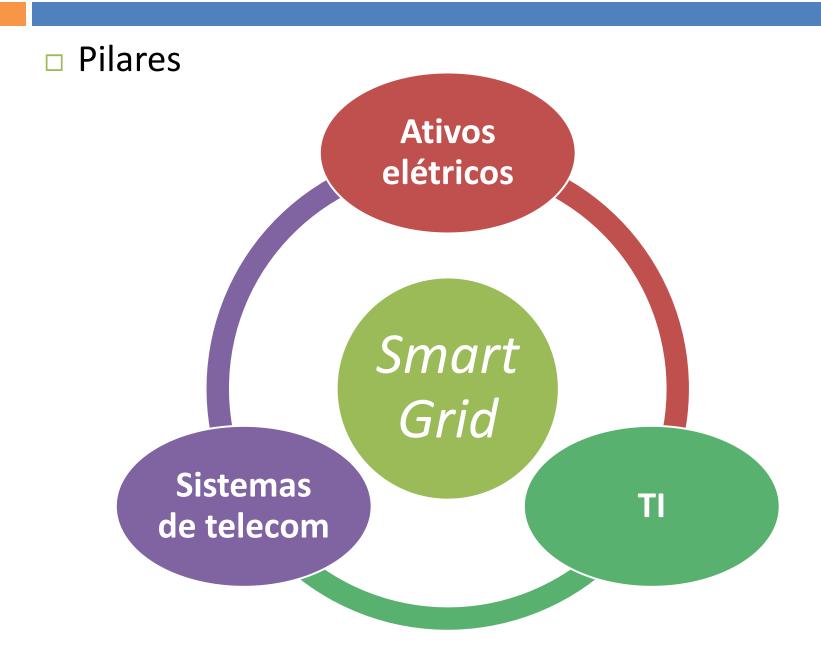
- Modernização da Rede Elétrica
 - Monitoramento de consumo automático
 - Redução de custo para distribuidoras
 - Redução de pessoal nas ruas
 - Detecção de 'gatos' e outros problemas
 - Disponibilidade de dados online para usuários
 - Melhor planejamento do consumo
 - Redução de custos
 - Redução de risco de sobrecarga

Smart Grids - Conceito e Percepção

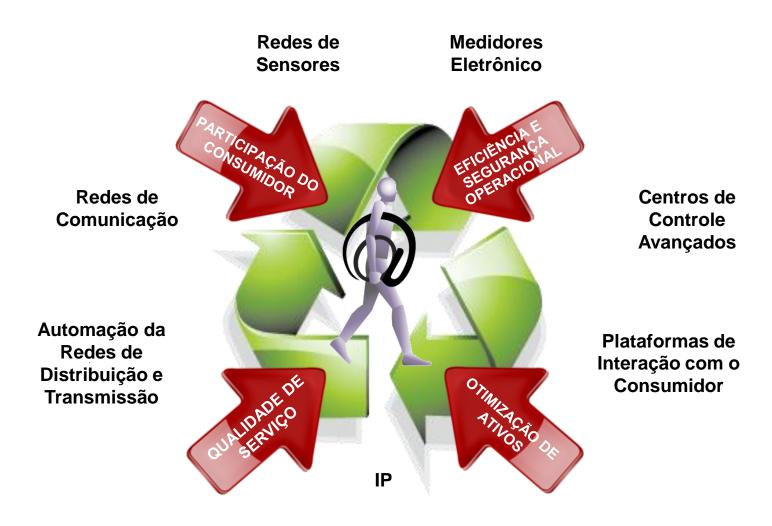
- □ O que é *Smart Grid*?
 - Uma boa pergunta!
 - Uma tecnologia?
 - Algum equipamento?
 - Uma abordagem / Metodologia?

Implantação de TIC (Tecnologias da Informação e Comunicação) na rede elétrica incorporando comunicação bidirecional e sistemas computacionais pervasivos com o intuito de identificar, antecipadamente, as falhas, melhorar o controle, o sensoriamento, a confiabilidade e a segurança.

Smart Grids - Conceito e Percepção


Smart Grid:

- Uma rede mais <u>inteligente</u> (visão sintética para os sistema elétrico)
- A <u>próxima **evolução** do sistema elétrico</u> (*Next Generation Electric Power System* NGEPS)
- Implica em <u>escolhas</u> para o usuário: tipo de energia que quer usar e quando quer usar com um possível ganho de custo ou possibilidade de otimização para o usuário final
- Smart Grid & Computação:
 - Necessita redes de computadores (networks) suportando as redes elétricas/sistemas elétricos
 - Novos recursos (sistemas) devem ser introduzidos no sistema elétrico:
 - Mais sensores, mais automação nos processos, estilo de operação com fluxo bidirecional de dados (operadora ← → cliente), outras inovações


Smart Grids - Conceito e Percepção

- Smart Grid do ponto de vista Redes/ Telecom:
 - Envolve todos os aspectos/ segmentos do sistema elétrico:
 - Geração, transmissão, distribuição, usuário final (usuário, smart grid residencial, veículos elétricos, outros aspectos envolvidos)
- Iniciativas Smart Grid são, tipicamente, de médio e longo prazo
 - □ Cada caso é um caso → diferentes operadoras com possivelmente diferentes estilos de adoção e implantação do Smart Grid

Smart Grids - Visão Tecnológica

Smart Grids - Visão Tecnológica

Sistemas Multiagentes

Fonte: CPqD, **2011**

Smart Grids - Aspectos Técnicos

- Alguns dos aspectos arquiteturais e técnicos inerentes à solução Smart Grid:
 - Arquitetura de Rede:
 - TCP/IP atende? Devemos utilizar outras arquiteturas específicas (*field-bus*, redes IEC 61850, ...? Redes Ópticas são uma possível solução? SDN (*Software Defined Networking*) pode ser interessante?
 - Tecnologias de Rede:
 - Quais? Tecnologias distintas por cenário de aplicação do Smart Grid?
 - Aplicações:
 - Qual o foco do negócio Smart Grid e quais aplicações são relevantes?
 - Segurança:
 - Como garantir uma operação segura num contexto distribuído de rede e telecomunicações
 - Comunicação:
 - Que tipo de modelo de comunicação é necessário ao Smart Grid? Bidirecional? Qual o nível de interatividade?

Smart Grids - Requisitos

- Capacidade Volume de Dados:
 - Monitoramento, sensores, medidores domésticos, elementos de atuação, outros
- Parâmetros de Qualidade da Comunicação (QoS: Quality of Service; QoE: Quality of Experience):
 - Atrasos, perdas, variação no atraso (jitter)
 - Necessidades coleta de dados e controle de operação em tempo real, sincronização, outras
- Comunicação bidirecional
 - Necessidade da integração funcional para atuar junto ao usuário
- Segurança
- Disponibilidade e Recuperação de Falhas:
 - Alta disponibilidade, resiliência, outros

Smart Grids - Requisitos

- □ Proteção de subestações transferência de comandos
 - Latência inferior à 5 ms
- Leitura e transmissão de dados dos medidores
 - Intervalos de 15min

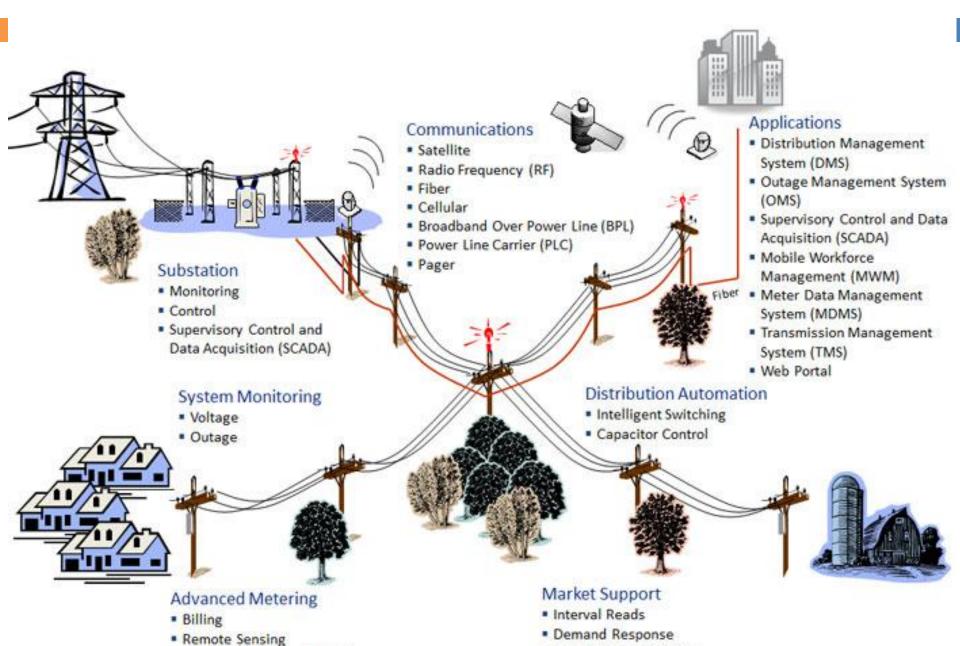
Computação (TIC) no Contexto Smart Grids

Uma solução integrada e consistente) são imprescindíveis para *Smart Grid*

Infraestrutura de Telecomunicação + TI

Integração da Informação

Computação (TIC) no Contexto Smart Grids

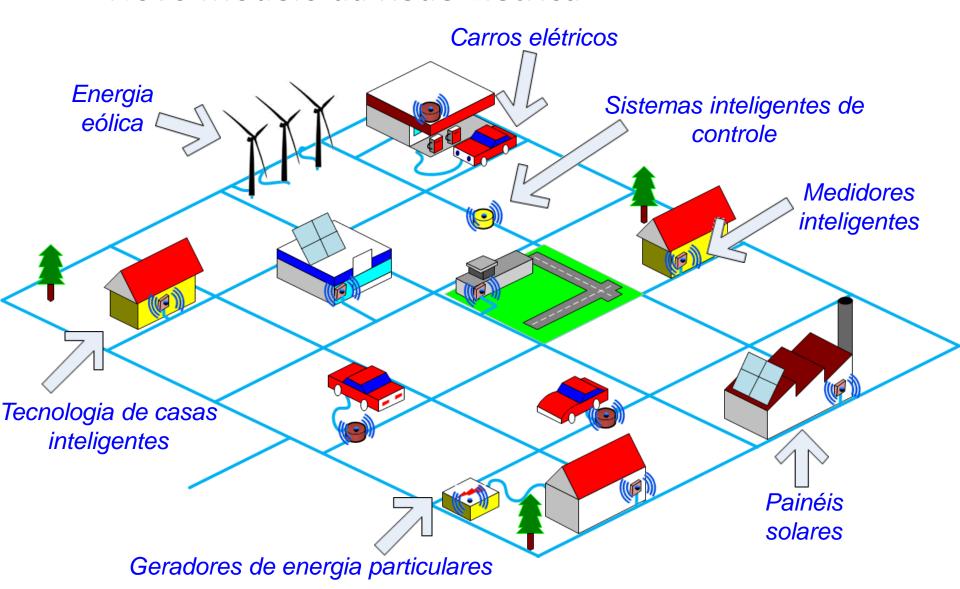

- Aplicações (TI): Sistemas de Gestão da Geração, Transmissão e Distribuição; Sistemas de Gestão e Controle de Falhas; Gestão e Controle de Demanda; CRM; Tarifação; Portal; Gestão e Controle de Interconexão com Sistemas; outros
- Monitoração: consumo dos usuários; sensoriamento de equipamentos, rede de transmissão e rede de distribuição; controle de fraude; outros
- Subestação: monitoramento; controle; Sistemas de Aquisição de Dados Controle e Supervisão (SCADA); outros

Computação (TIC) no Contexto Smart Grids

- □ Redes Backbone (WANs e MANs):
 - Escopo longa distância e metropolitano
 - Suporta principalmente a área de TI e a integração dos segmentos Smart Grid (geração, transmissão, distribuição e usuário)
- □ Redes de aplicação local (LANs):
 - Escopo maior na área de controle e operação (subestações, escritórios, outros)
- Redes de aplicação local com forte distribuição física:
 - Escopo maior é a área de monitoração e sensoriamento remoto de equipamentos (distribuição, transmissão e geração)
- Redes de aplicação local focadas no usuário:
 - HAN Home Area Networks
 - Foco total no usuário, na automação doméstica e na integração de veículos

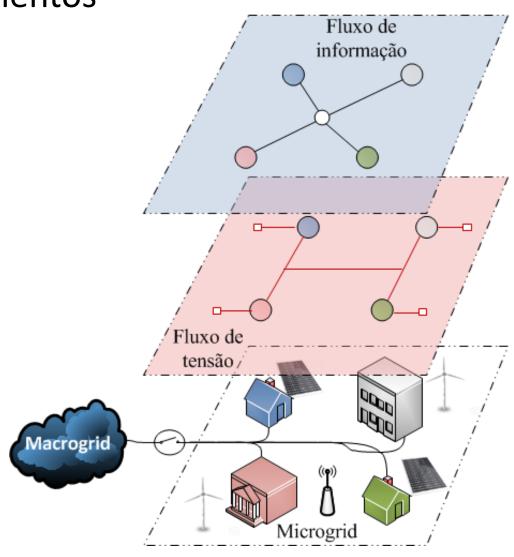
Smart Grids - Um Cenário

Home Area Network (HAN)


Retail Communication

Micro Grids

- Novo Modelo da Rede Elétrica
 - É um sistema de energia limitado regionalmente, constituído por recursos energéticos distribuídos, consumidores e, opcionalmente, armazenamento.
 - Opera de forma autônoma, conectada ou não à concessionária
 - Atua como um agente único perante a concessionária, agregando os recursos distribuídos.


Micro Grids

Novo Modelo da Rede Elétrica

Micro Grids

Elementos

IEC 61850 - Introdução

- Principal objetivo da norma IEC 61850:
 - Garantir interoperabilidade entre dispositivos de diferentes fabricantes
 - Suportar a evolução de tecnologias
 - Possibilitar a comunicação com alta velocidade e elevada confiabilidade

IEC 61850 - Introdução

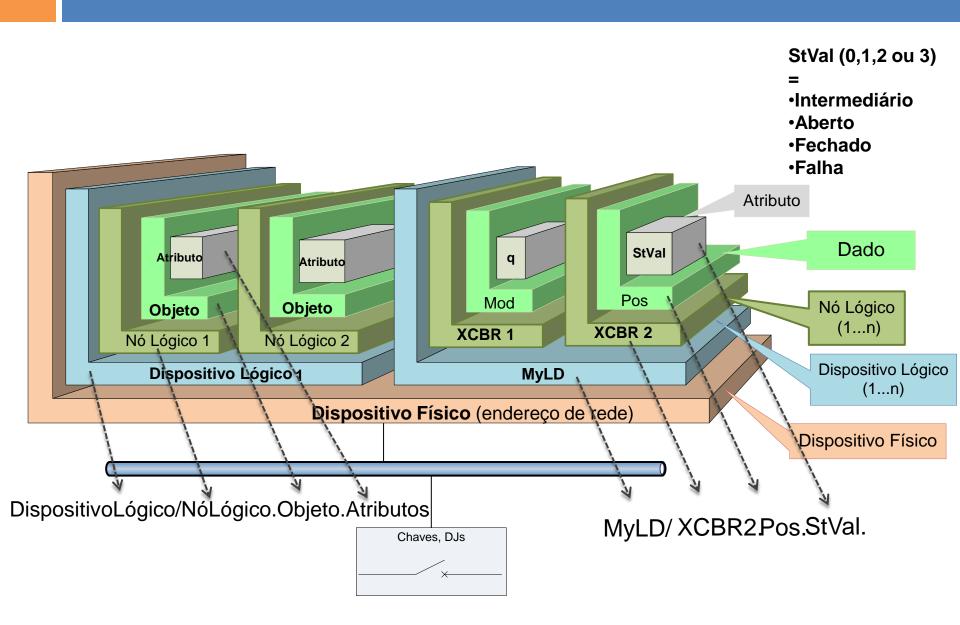
□ Não é um protocolo!

O IEC 61850 não define máquina de estados, mas um modelo de informação.

É um modelo que padroniza a comunicação e o sistema de automação de energia

IEC 61850 - Introdução

- O que esse modelo de Informação propõe?
 - Modelagem dos dispositivos de automação da subestação
 - Orientação a objetos
 - Modelagem dos mecanismos de comunicação
 - ■Troca de mensagens
 - Linguagem de configuração padronizada (SCL)


IEC 61850 - Modelagem dos Dispositivos

 Agrupados de acordo com sua área de aplicação mais comum

Ex:

- **T**XXX Transformadores e Sensores
 - TCTR Transformador de Corrente (Current TRansformer)
 - TVTR Transformador de Potencial (Voltage TRansformer)
- XXXX Interface com chaves de processo(ex: disjuntores)
 - XCBR Chave disjuntor (Circuit BReaker)
 - XSWI Chave Seccionadora (switch)
- Sua funcionalidade textualmente descrita

IEC 61850 - Estrutura e Nome de Objeto

IEC 61850 - Modelagem de comunicação

- Que mensagem temos na rede?
 - Alarme *prioridade alta*
 - sinais de disparo, bloqueio, intertravamento etc.
 - Monitoramento e Controle *prioridade média*
 - estado de equipamentos e controle (Informações operacionais)
 - Transferências de arquivos prioridade baixa
 - oscilogramas, relatórios de falta etc.

IEC 61850 - Mensagens GOOSE

- □ Requisitos Rígidos de Tempo:
 - Mensagens rápidas (trips) 3ms
 - Comandos, mensagens simples (20ms)

- Mapeada diretamente na camada de enlace
 - Trafegam apenas dentro da LAN
 - Possuem apenas endereços MAC
 - Não possuem IP não são roteáveis.

Desafios

- Infraestrutura de telecomunicação
 - Permitir a integração dos diversos usuários da rede;
 - Comunicação Bidirecional e Segura
 - Diferentes requisitos de qualidade de serviço
 - Diferente cenários têm requisitos distintos
 - Tecnologias de rede e telecomunicações são diversas

Desafios

- Interoperabilidade na comunicação entre dispositivos inteligentes na rede
 - Liberdade de inovação e Competitividade
- Requisitos temporais
- Projetar uma rede estruturada de proteção, de supervisão e de monitoramento que dê suporte a controle e gerência eficiente dos recursos da rede

Desafios

- Comunicação segura (segurança dos dados: disponibilidade, integridade, autenticidade, confidencialidade, ...)
- Comunicação confiável
 - Confiabilidade da rede
 - □ Falhas:
 - Previsão, detecção, recuperação, resiliência, outros aspectos
- Rede:
 - □ Dinamicidade da rede (flexibilidade visando novos circuitos ou novas configurações)
 - Volume de dados
 - Requisitos de tempo
 - Garantias de atraso
- Padronização
- Regulação e aspectos econômicos

- Infraestrutura de comunicação para medição e monitoramento
- Infraestrutura de comunicação para dar suporte ao roteamento energético
- □ Redes de controle e supervisão
 - Interoperabilidade
 - Requisitos de tempo real
 - Integração de sistemas
 - Comunicação dentro de subestações
 - Comunicação entre subestações
 - Integração dos clientes

- Aplicação da norma para fora da subestação
- Mapeamento dos protocolos existentes de acordo com a estrutura da norma
- Integração de veículos elétricos, medidores inteligentes e casas inteligentes
- Evolução da norma
 - Novos mecanismos
 - □ Integração com inovações na área de rede

- Autonomia
 - Detecção automática
 - Auto-recuperação
 - Ilhamento eficiente
 - Gerenciamento de fontes energéticas
- Analogia entre temas de telecomunicações e sistemas elétricos
 - Roteamento
 - Balanceamento de carga
 - Gerência de redes
 - Sistemas distribuídos

- Casas inteligentes
 - Novas aplicações
 - Redes domésticas
 - Confiabilidade/confiança de dados
 - Privacidade e segurança
- Técnicas de virtualização para controle e supervisão
- Redes compartilhadas entre operadoras
 - Confiabilidade e reputação
 - Segurança
 - Controle de acesso

Conclusão

- Smart grids
 - Grande desafio
 - Inúmeras áreas de pesquisa
 - Interação entre diversas áreas do conhecimento
 - Engenharia elétrica
 - Engenharia de telecomunicações
 - Ciência da computação
 - Eficiência, escalabilidade, previsibilidade, etc.

Conclusão

- □ IEC 61850
 - Novo modelo de informação
 - Suporte para sistemas com alta complexidade de gerenciamento
 - Sistema elétrico está em processo revolucionário
 - Alta integração dos sistemas
 - Aumento da complexidade da rede
 - Aumento da demanda por banda na rede
 - Aumento do número de entidades atuando na rede

FIM