

Viewpoints and Perspectives
Reference Card

Nick Rozanski and Eoin Woods
www.viewpoints-and-perspectives.info

Content from Edition 2 of Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives by Nick

Rozanski and Eoin Woods, Addison Wesley 2011.
The book is available from Amazon.com and Amazon.co.uk and

other booksellers that carry Addison-Wesley books.

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info

Contents
Overview..1	

Viewpoint Summaries..2	

Quality Properties Addressed by Perspectives ...2	

Stakeholders..3	

Context Viewpoint..4	

Functional Viewpoint ...5	

Information Viewpoint ..6	

Concurrency Viewpoint..7	

Development Viewpoint ...8	

Deployment Viewpoint ...9	

Operational Viewpoint ...10	

Accessibility Perspective ...11	

Availability and Resilience Perspective ...12	

Development Resource Perspective ...13	

Evolution Perspective ..14	

Internationalization Perspective...15	

Location Perspective ...16	

Performance and Scalability Perspective ..17	

Regulation Perspective..18	

Security Perspective..19	

Usability Perspective ...20	

http://www.viewpoints-and-perspectives.info page 1

Overview
Our book is based around four key concepts: stakeholders, views, viewpoints and
perspectives. The definition of each is reproduced below.

Definition: A stakeholder in the architecture of a system is a individual, team,
organization, or classes thereof, having an interest in the realization of the system.

Definition: A view is a representation of one or more structural aspects of an
architecture that illustrates how the architecture addresses one or more concerns
held by one or more of its stakeholders.

Definition: A viewpoint is a collection of patterns, templates, and conventions for
constructing one type of view. It defines the stakeholders whose concerns are
reflected in the viewpoint and the guidelines, principles, and template models for
constructing its views.

Definition: An architectural perspective is a collection of activities, tactics, and
guidelines that are used to ensure that a system exhibits a particular set of related
quality properties that require consideration across a number of the system’s
architectural views.

The sets of viewpoints and perspectives that we have developed for information systems
architecture are illustrated by the diagram in Figure 1.

Figure 1 - Viewpoints and Perspectives

In this document, we provide a summary of each of our viewpoints and perspectives.

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 2

Viewpoint Summaries
• Context: Describes the relationships, dependencies, and interactions between the

system and its environment (the people, systems, and external entities with which it
interacts). Includes the system’s runtime context and its scope and requirements.

• Functional: Describes the system’s functional elements, their responsibilities,
interfaces, and primary interactions; drives the shape of other system structures such as
the information structure, concurrency structure, deployment structure, and so on.

• Information: Describes the way that the architecture stores, manipulates, manages,
and distributes information. This viewpoint develops a complete but high-level view of
static data structure and information flow to answer the big questions around content,
structure, ownership, latency, references, and data migration.

• Concurrency: Describes the concurrency structure of the system and maps functional
elements to concurrency units to clearly identify the parts of the system that can
execute concurrently and how this is coordinated and controlled.

• Development: Describes the architecture that supports the software development
process. Development views communicate the aspects of the architecture of interest to
those stakeholders involved in building, testing, maintaining, and enhancing the system.

• Deployment: Describes the environment into which the system will be deployed, and
the dependencies the system has on its runtime environment. Deployment views
capture the system’s hardware environment, technical environment requirements, and
the mapping of the software to hardware elements.

• Operational: Describes how the system will be operated, administered, and supported
when it is running in its production environment, by identifying system-wide strategies
for addressing operational concerns and identifying solutions that address these.

Quality Properties Addressed by Perspectives
• Accessibility: The ability of the system to be used by people with disabilities
• Availability and Resilience: The ability of the system to be fully or partly operational as

and when required and to effectively handle failures that could affect system availability
• Development Resource: The ability of the system to be designed, built, deployed, and

operated within known constraints around people, budget, time, and materials
• Evolution: The ability of the system to be flexible in the face of the inevitable change

that all systems experience after deployment, balanced against the costs of providing
such flexibility

• Internationalization: The ability of the system to be independent from any particular
language, country, or cultural group

• Location: The ability of the system to overcome problems brought about by the
absolute location of its elements and the distances between them

• Performance and Scalability: The ability of the system to predictably execute within its
mandated performance profile and to handle increased processing volumes

• Regulation: The ability of the system to conform to local and international laws, quasi-
legal regulations, company policies, and other rules and standards

• Security: The ability of the system to reliably control, monitor, and audit who can
perform what actions on what resources and to detect and recover from failures in
security mechanisms

• Usability: The ease with which people who interact with the system can work effectively

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 3

Stakeholders
Stakeholder groups important to the development of most information systems include the
following.

• Acquirers: Oversee the procurement of the system or product
• Assessors: Oversee the system’s conformance to standards and legal regulation
• Communicators: Explain the system to other stakeholders via its documentation and

training materials
• Developers: Construct and deploy the system from specifications (or lead the teams

that do this)
• Maintainers: Manage the evolution of the system once it is operational
• Production Engineers: Design, deploy and manage the hardware and software

environments in which the system will be built, tested and run
• Suppliers: Build and/or supply the hardware, software, or infrastructure on which the

system will run
• Support staff: Provide support to users for the product or system when it is running
• System administrators: Run the system once it has been deployed
• Testers: Test the system to ensure that it is suitable for use
• Users: Define the system’s functionality and ultimately make use of it

The characteristics of a good stakeholder can be summarised as follows.

• Informed: Do your stakeholders have the information, the experience, and the
understanding needed to make the right decisions?

• Committed: Are your stakeholders willing and able to make themselves available to
participate in the process, and are they prepared to make some possibly difficult
decisions?

• Authorized: Can you be sure that decisions made now by your stakeholders will not be
reversed later (at potentially high cost)?

• Representative: If a stakeholder is a group rather than a person, have suitable
representatives been selected from the group? Do those representatives meet the
above criteria for individual stakeholders?

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 4

Context Viewpoint
The Context view of a system defines the relationships, dependencies, and interactions
between the system and its environment—the people, systems, and external entities with
which it interacts. It defines what the system does and does not do; where the boundaries are
between it and the outside world; and how the system interacts with other systems,
organizations, and people across these boundaries.

Definition Describes the relationships, dependencies and interactions between the system and
its environment (the people, systems and external entities that it interacts with)

Concerns System scope and responsibilities, system quality objectives, identity of external
entities and services and data used, nature and characteristics of external entities,
identity and responsibilities of external interfaces, nature and characteristics of
external interfaces, other external interdependencies, impact of the system on its
environment, overall completeness consistency and coherence

Models Context model, scope definition, interaction scenarios

Problems and Pitfalls Missing or incorrect context model elements, uneven focus, inappropriate level of
detail, scope creep, implicit or assumed scope or requirements, missing implicit
dependencies, loose or inaccurate interface descriptions, overcomplicated
interactions, overuse of jargon

Applicability All systems

Stakeholders and Concerns
Acquirers System scope and responsibilities, system quality objectives, identity of external

entities, and services and data used, impact of the system on its environment

Assessors All concerns

Communicators System scope and responsibilities, identity and responsibilities of external entities,
identity and responsibilities of external interfaces

Developers All concerns

Production Engineers System quality objectives, nature and characteristics of external interfaces, impact
of the system on its environment

System administrators All concerns

Testers All concerns

Users System scope and responsibilities, identity of external entities, and services and
data used, overall completeness, consistency and coherence

Checklist
• Have you consulted with all of the stakeholders who are interested in the Context View?
• Have you identified all of the external entities that the system needs to interact with, and

their relevant responsibilities?
• Have you got a good understanding of the nature of every interface with each external

entity, and is this documented to an appropriate level of detail?
• Have you considered possible dependencies between the external entities that you

have to interact with? Are these implicit dependencies documented in the AD?
• Does the context diagram adequately illustrate all the interfaces from the system to its

environment, with sufficient definition underpinning the diagram?
• Have you identified all of the key capabilities or requirements of the system, and are

they documented to an appropriate level of detail?
• Does the scope identify any important technology constraints, such as mandated

platforms?
• Is the scope specified at an appropriate level of detail, balancing brevity with clarity and

completeness?
• Has the context model been formally agreed by all key stakeholders? Is this

documented somewhere?
• Has the context model been placed under formal change control?
• Do the main business processes appear to have adequate coverage, either by systems

or defined manual processes?
• Does the overall solution hang together in a coherent way?

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 5

Functional Viewpoint
The Functional view of a system defines the architectural elements that deliver the system’s
functionality. The view documents the system’s functional structure—including the key
functional elements, their responsibilities, the interfaces they expose, and the interactions
between them. Taken together, this demonstrates how the system will perform the functions
required of it.

Definition Describes the system’s runtime functional elements and their responsibilities,
interfaces, and primary interactions

Concerns Functional capabilities, external interfaces, internal structure, and design philosophy

Models Functional structure model

Problems and Pitfalls Poorly defined interfaces, poorly understood responsibilities, infrastructure modeled
as functional elements, overloaded view, diagrams without element definitions,
difficulty in reconciling the needs of multiple stakeholders, wrong level of detail, “God
elements,” and too many dependencies

Applicability All systems

Stakeholders and Concerns
Acquirers Primarily functional capabilities and external interfaces

Assessors All concerns

Communicators All concerns, to some extent

Developers Primarily design philosophy and internal structure, but also functional capabilities
and external interfaces

System administrators Primarily design philosophy and internal structure

Testers Primarily design philosophy and internal structure, but also functional capabilities
and external interfaces

Users Primarily functional capabilities and external interfaces

Checklist
• Do you have fewer than 15–20 top-level elements?
• Do all elements have a name, clear responsibilities, and clearly defined interfaces?
• Do all element interactions take place via well-defined interfaces and connectors that

link the interfaces?
• Do your elements exhibit an appropriate level of cohesion and coupling?
• Have you identified the important usage scenarios and used these to validate the

system’s functional structure?
• Have you checked the functional coverage of your architecture to ensure it meets its

functional requirements?
• Have you considered how the architecture is likely to cope with possible change

scenarios in the future?
• Does the presentation of the view take into account the concerns and capabilities of all

interested stakeholder groups? Will the view act as an effective communication vehicle
for all of these groups?

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 6

Information Viewpoint
The ultimate purpose of any information system is to manipulate data in some form. This data
may be stored persistently, as in a database management system, or it may be transiently
manipulated in memory while a program executes. You use the Information view to answer
questions about how your system will store, manipulate, manage, and distribute information

Definition Describes the way that the architecture stores, manipulates, manages, and
distributes information

Concerns Information structure and content; information purpose and usage; information
ownership; enterprise-owned information; identifiers and mappings; transaction
management and recovery; volatility of data semantics; information storage models;
information flow; information consistency; information quality; timeliness, latency, and
age; and archiving and information retention

Models Static information structure models, information flow models, information lifecycle
models, information ownership models, information quality analysis, metadata
models, and volumetric models

Problems and Pitfalls Representation incompatibilities, unavoidable multiple updaters, key-matching
deficiencies, interface complexity, overloaded central database, inconsistent
distributed databases, poor information quality, excessive information latency, and
inadequate volumetrics

Applicability Any system that has more than trivial information management needs

Stakeholders and Concerns
Acquirers Concerned with preserving and safeguarding the value of the organization’s

information assets, so the following are key: information quality and archiving;
reference data; information retention

Assessors Interested in all aspects, with a focus on information structure and flow, identifiers
and mappings, and information quality

Communicators Rarely focus on detail on the information architecture, but may find a background
understanding of the key principles and strategies helpful

Developers Focus on how the models will map to real databases and interfaces

System administrators Interested in how these real-world system components will be managed and
supported

Testers Interested in the main database structures, how they are affected by the operation
of the system, the data flow through the system, and how to create realistic test
data sets

Users Concerned with functional aspects of the information architecture (e.g., information
ownership and regulation) and user-visible qualities such as timeliness, latency,
and age; and information quality

Checklist
• Do you have an appropriate level of detail in your models (no more than 20 entities)?
• Are keys clearly identified for all important entities?
• Have you defined mappings between keys, where required, and defined processes for

maintaining these mappings when data items are created and removed?
• Have you defined strategies for resolving data ownership conflicts, particularly where

there are multiple creators or updaters?
• Are latency requirements clearly identified, and are mechanisms in place to ensure

these are achieved?
• Do you have clear strategies for transactional consistency across distributed data

stores, balanced against their cost in terms of performance and complexity?
• Do you have mechanisms in place for validating migrated data and dealing

appropriately with errors?
• Have you defined sufficient storage and processing capacity for archiving and restore?
• Has a data quality assessment been done? Have you created strategies for dealing with

poor-quality data?

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 7

Concurrency Viewpoint
The Concurrency view is used to describe the system’s concurrency and state-related
structure and constraints. This involves defining the parts of the system that can run at the
same time and how this is to be controlled, by defining how the system’s functional elements
are packaged into operating system processes and how the processes coordinate their
execution.

Definition Describes the concurrency structure of the system, mapping functional elements to
concurrency units to clearly identify the parts of the system that can execute
concurrently, and shows how this is coordinated and controlled

Concerns Task structure, mapping of functional elements to tasks, interprocess
communication, state management, synchronization and integrity, startup and
shutdown, task failure, and reentrancy

Models System-level concurrency models and state models

Problems and Pitfalls Modeling of the wrong concurrency, excessive complexity, resource contention,
deadlock, and race conditions

Applicability All information systems with a number of concurrent threads of execution

Stakeholders and Concerns
Administrators Task structure, startup and shutdown, and task failure

Communicators Task structure, startup and shutdown, and task failure

Developers All concerns

Testers Task structure, mapping of functional elements to tasks, startup and shutdown,
task failure, and reentrancy

Checklist
• Is there a clear system-level concurrency model?
• Are your models at the right level of abstraction? Have you focused on the

architecturally significant aspects?
• Can you simplify your concurrency design?
• Do all interested parties understand the overall concurrency strategy?
• Have you mapped all functional elements to a process (and thread if necessary)?
• Do you have a state model for at least one functional element in each process and

thread? If not, are you sure the processes and threads will interact safely?
• Have you defined a suitable set of interprocess communication mechanisms to support

the interelement interactions defined in the Functional view?
• Are all shared resources protected from corruption?
• Have you minimized the intertask communication and synchronization required?
• Do you have any resource hot spots in your system? If so, have you estimated the likely

throughput, and is it high enough? Do you know how you would reduce contention at
these points if forced to later?

• Can the system possibly deadlock? If so, do you have a strategy for recognizing and
dealing with this when it occurs?

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 8

Development Viewpoint
A considerable amount of planning and design of the development environment is often
required to support the design and build of software for complex systems. Things to think
about include code structure and dependencies, build and configuration management of
deliverables, system-wide design constraints, and system-wide standards to ensure technical
integrity. It is the role of the Development view to address these aspects of the system
development process.

Definition Describes the architecture that supports the software development process

Concerns Module organization, common processing, standardization of design, standardization
of testing, instrumentation, and codeline organization

Models Module structure models, common design models, and codeline models

Problems and Pitfalls Too much detail, overburdening the AD, uneven focus, lack of developer focus, lack
of precision, and problems with the specified environment

Applicability All systems with significant software development involved in their creation

Stakeholders and Concerns
Developers All concerns

Production Engineers May be involved in or have responsibility for provisioning development and test
environments, and mechanisms and controls over the system’s transition into
production

Testers Common processing, instrumentation, test standardisation and possibly codeline
organization

Checklist
• Have you defined a clear strategy for organizing the source code modules in your

system?
• Have you defined a general set of rules governing the dependencies that can exist

between code modules at different abstraction levels?
• Have you identified all of the aspects of element implementation that need to be

standardized across the system?
• Have you clearly defined how any standard processing should be performed?
• Have you identified any standard approaches to design that you need all element

designers and implementers to follow? If so, do your software developers accept and
understand these approaches?

• Will a clear set of standard third-party software elements be used across all element
implementations? Have you defined the way they should be used?

• Is this view as minimal as possible?
• Is the presentation of this view in the AD appropriate?

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 9

Deployment Viewpoint
The Deployment view focuses on aspects of the system that are important after the system
has been tested and is ready to go into live operation. This view defines the physical
environment in which the system is intended to run, including the hardware environment your
system needs (e.g., processing nodes, network interconnections, and disk storage facilities),
the technical environment requirements for each node (or node type) in the system, and the
mapping of your software elements to the runtime environment that will execute them.

Definition Describes the environment into which the system will be deployed, including the
dependencies the system has on its runtime environment

Concerns Types of hardware required, specification and quantity of hardware required, third-
party software requirements, technology compatibility, network requirements,
network capacity required, and physical constraints

Models Runtime platform models, network models, and technology dependency models

Problems and Pitfalls Unclear or inaccurate dependencies, unproven technology, lack of specialist
technical knowledge, late consideration of the deployment environment,
inappropriate headroom and not specifying a disaster recovery environment

Applicability Systems with complex or unfamiliar deployment environments

Stakeholders and Concerns
Assessors Types of hardware required, technology compatibility, and network requirements

Communicators Types and specification of hardware required, third-party software requirements,
and network requirements (particularly topology)

Developers Types and (general) specification of hardware required, third-party software
requirements, technology compatibility, and network requirements (particularly
topology)

System administrators Types, specification, and quantity of hardware required; third-party software
requirements; technology compatibility; network requirements; network capacity
required; and physical constraints

Testers Types, specification, and quantity of hardware required; third-party software
requirements, and network requirements

Checklist
• Have you mapped all of the system’s functional elements to a type of hardware device?

Have you mapped them to specific hardware devices if appropriate?
• Is the role of each hardware element in the system fully understood? Is the specified

hardware suitable for the role?
• Have you established detailed specifications for the system’s hardware devices? Do

you know exactly how many of each device are required?
• Have you identified all required third-party software and documented all the

dependencies between system elements and third-party software?
• Is the network topology required by the system understood and documented?
• Have you estimated and validated the required network capacity? Can the proposed

network topology be built to support this capacity?
• Have network specialists validated that the required network can be built?
• Have you performed compatibility testing when evaluating your architectural options to

ensure that the elements of the proposed deployment environment can be combined as
desired?

• Have you used enough prototypes, benchmarks, and other practical tests when
evaluating your architectural options to validate the critical aspects of the proposed
deployment environment?

• Can you create a realistic test environment that is representative of the proposed
deployment environment?

• Are you confident that the deployment environment will work as designed? Have you
obtained external review to validate this opinion?

• Are the assessors satisfied that the deployment environment meets their requirements
in terms of standards, risks, and costs?

• Have you checked that the physical constraints (such as floor space, power, cooling,
and so on) implied by your required deployment environment can be met?

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 10

Operational Viewpoint
The aim of the Operational viewpoint is to identify a system-wide strategy for addressing the
operational concerns of the system’s stakeholders and to identify solutions that address
these. The Operational view focuses on concerns that help ensure that the system is a
reliable and effective part of commissioning enterprise’s information technology environment.
For a product development project, the Operational view illustrates the types of concerns that
customers of the product are likely to encounter, rather than the concerns of a specific site.

Definition Describes how the system will be operated, administered, and supported when it is
running in its production environment

Concerns Installation and upgrade, functional migration, data migration, operational monitoring
and control, alerting, configuration management, performance monitoring, support,
and backup and restore

Models Installation models, migration models, configuration management models,
administration models, and support models

Problems and Pitfalls Lack of engagement with the operational staff, lack of backout planning, lack of
migration planning, insufficient migration window, missing management tools, lack of
integration into the production environment, inadequate backup models, and
inappropriate alerting

Applicability Any system being deployed into a complex or critical operational environment

Stakeholders and Concerns
Assessors Functional migration, data migration, and support

Communicators Installation and upgrade, functional migration, and operational monitoring and
control

Developers Operational monitoring and control and performance monitoring

Production Engineers Installation and upgrade, operational monitoring and control, configuration
management, performance monitoring

Support staff Functional migration, data migration, and support

System administrators All concerns

Testers Installation and upgrade, functional migration, data migration, monitoring and
control, and performance monitoring

Users Support

Checklist
• Do you know what it takes to install your system?
• Do you have a plan for backing out a failed installation?
• Can you upgrade an existing version of the system (if required)?
• How will information be moved from the existing environment into the new system?
• Do you have a clear migration strategy to move workload to the new system? Can you

reverse the migration if you need to? How will you deal with data synchronization?
• How will the system be backed up? Is restore possible in an acceptable time period?
• Are the administrators confident that they can monitor and control the system and do

they have a clear understanding of operational procedures?
• How will performance metrics be captured for the system’s elements?
• Can you manage the configuration of all of the system’s elements?
• Do you know how support will be provided for the system? Is the support provided

suitable for the stakeholders it is being provided for?
• Have you cross-referenced the requirements of the administration model back to the

Development view to ensure that they will be implemented consistently?

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 11

Accessibility Perspective
Accessibility should take into account not only the direct users of the system—i.e., those
sitting at terminals—but the indirect users as well. For example, a financial system may need
to provide bank statements in Braille for blind customers. Consideration of disability aside,
addressing accessibility concerns brings benefits in many cases by making systems more
usable and efficient in their operation.

Desired Quality The ability of the system to be used by people with disabilities

Applicability Any system that may be used or operated by people with disabilities or may be
subject to legislation regarding disabilities

Concerns Types of disability, functional availability, and disability regulation

Activities Identification of system touch points, device independence, and content equivalence

Tactics Assistive technologies, specialist input devices, and voice recognition

Problems & Pitfalls Ignoring these needs until too late, lack of knowledge about regulation and
legislation, and lack of knowledge about suitable solutions

Applicability to Views
Context There may be a requirement for the system to interface with specialist devices for

use by people with disabilities, such as voice--‐controlled input devices.

Functional In theory, the functional structure should not really be affected by accessibility
considerations. In practice, functional compromises may need to be made.

Information The information structure is unlikely to be significantly affected.

Concurrency The impact on this view is minimal.

Development The Development view needs to raise awareness that accessibility issues are
important. And, of course, you may need to accommodate disabled developers, too.

Deployment The deployment environment is likely to be the most affected by this perspective.
Special hardware may be needed to support disabled users.

Operational The Operational view may have to take into account the needs of disabled users
requiring support or the needs of disabled support staff themselves.

Checklist for Requirements Capture
• Have you identified and obtained stakeholder approval of the extent to which the system

must support the needs of disabled users?
• Have you provided for the needs of indirect disabled users, such as customers who

need paperwork provided in Braille format?
• Have you identified the disability legislation that affects the system and assessed the

system against it?
• Have you ensured that the system meets any internal accessibility standards?
• Have you considered all points at which the system has any human interaction? For

example, have you considered operational management and monitoring of the system,
or printed forms that are sent to customers to be filled in?

Checklist for Architecture Definition
• How confident are you that your architectural assumptions are correct? Where you are

not, are mitigating activities in place (such as a proof-of-concept)?
• Do the interactive elements of your architecture sufficiently separate presentation and

content to meet the system’s accessibility objectives?
• Are the interfaces between components (particularly those leading in and out of

presentation devices) sufficiently generic to be able to take on board new devices
without (much) rework?

• Does the architecture allow for presentation alternatives to convey meaning (e.g., text,
pictures, and/or sound in a user interface)?

• Do standards for user interface design emphasize simplicity, consistency, and clarity in
place? Does the architecture adhere to them?

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 12

Availability and Resilience Perspective
This perspective allows you to identify the availability and resilience needs of your system and
identify solutions that take into account the costs that providing these properties incur.

Desired Quality The ability of the system to be fully or partly operational as and when required and to
effectively handle failures that could affect system availability

Applicability Any system that has complex or extended availability requirements, complex
recovery processes, or a high profile (e.g., is visible to the public)

Concerns Classes of service, planned downtime, unplanned downtime, time to repair, and
disaster recovery

Activities Capture the availability requirements, produce the availability schedule, estimate
platform availability, estimate functional availability, assess against the requirements,
and rework the architecture

Tactics Select fault-tolerant hardware, use high-availability clustering and load balancing, log
transactions, apply software availability solutions, select or create fault-tolerant
software, design for failure, allow for component replication, relax transactional
consistency and identify backup and disaster recovery solutions

Problems & Pitfalls Single point of failure, cascading failure, unavailability through overload,
overambitious availability requirements, ineffective error detection, over-estimation of
component resilience, overlooked global availability requirements, and incompatible
technologies

Applicability to Views
Context Unlikely to result in many changes to the Context view.

Functional Functional changes may sometimes be needed to support availability requirements,
such as the ability to operate in an offline mode a network is unavailable.

Information A key availability consideration is the set of processes and systems for backup and
recovery.

Concurrency Features such as hardware replication and failover in your system may imply
changes or enhancements to your concurrency model.

Development Your approach to achieving availability may impose design constraints on the
software modules that need captured in this view.

Deployment Availability and resilience can have a big impact on the deployment environment
such as fault-tolerant hardware, disaster recovery sites, redundancy & clustering.

Operational May need to capture processes to allow the identification and recovery of problems
in the production environment and handle failure appropriately (e.g. failover & DR).

Checklist for Requirements Capture
• Are availability requirements defined, documented, and approved?
• Are availability requirements driven by business needs?
• Do availability requirements consider different classes of service, if appropriate?
• Do availability requirements strike a realistic balance between cost and need?
• Do availability requirements consider online and batch availability?
• Do availability requirements take into account variations such as period end?
• Do availability requirements take into account future changes a longer online day?
• Can availability requirements be met by the chosen hardware and software platform?
• Have you defined strategies for disaster recovery and business continuity?
• Do stakeholders have realistic expectations around unplanned downtime?

Checklist for Architecture Definition
• Does the proposed architectural solution meet the availability requirements? Can this be

demonstrated, either theoretically or based on previous practical experience?
• Does the solution consider the time taken to recover from failure?
• Does the backup solution provide for the transactional integrity of restored data?
• Has consideration been given to restoring data from corrupt or incomplete backups?
• Have you defined a suitable standby site in the architecture, if appropriate?
• Have you assessed the impact of availability on functionality and performance?
• Have you assessed the architecture for single points of failure and other weaknesses?
• If you developed a fault-tolerant model, does this extend to all vulnerable components?

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 13

Development Resource Perspective
All software projects are primarily constrained by time and cost. IT budgets are never
unlimited, and although technology capabilities improve from year to year, so do the costs of
building, deployment, and support. This perspective allows you to consider whether your
architecture can be created, given development resource constraints.

Desired Quality The ability of the system to be designed, built, deployed, and operated within known
constraints related to people, budget, time, and materials

Applicability Any system for which development time is limited, technical skills for development or
operations are hard to find, or unusual or unfamiliar hardware or software is required

Concerns Time constraints, cost constraints, required skill sets, available resources, budgets,
and external dependencies

Activities Cost estimation, development time estimation, development planning, dependency
management, scoping, prototyping, and expectation management

Tactics Incremental and iterative development, expectation management, descoping,
prototyping and piloting, and fitness for purpose

Problems & Pitfalls Overly ambitious timescales, failure to consider lead times, failure to consider
physical constraints, underbudgeting, failure to provide staff training and consider
familiarization needs, insufficient resource allocation for testing and rollout,
insufficient time for likely rework, overallocation of staff, and difficulty getting access
to knowledgeable business stakeholders

Applicability to Views
Context Resource constraints such as short timescales or limitations on available skills may

impose constraints on system scope.

Functional Resource constraints often impose restrictions on functionality and on functional
qualities such as generality.

Information Complex or particularly sophisticated information models may require a large staff of
specialists to implement; and so may impose restrictions on your options.

Concurrency Concurrent architectures are often complex to implement, so you will need to
consider the development skills and testing time available to you.

Development Cost constraints may limit the number of separate development and test
environments available to you.

Deployment Again, cost constraints may limit your options for deployment, particularly where
redundancy and resilience are concerned.

Operational You need to be aware of the cost implications of your proposed operational and
support architecture.

Checklist for Requirements Capture
• Have you understood the project’s key constraints in terms of time and budget, as well

as the room for manoeuvring if your architecture mandates extra resources?
• Have you considered physical constraints such as existing capacity and office space?
• Have you balanced the benefits of unfamiliar technologies against their costs and risks?
• Which compromises are more likely to be accepted where resource constraints

necessitate this? To what extent could you limit scope, functionality, or even quality?
Are you confident that savings would be realized by making such compromises?

• To what extent is there scope for deferring features until future releases of software?
• Do you understand which functional and operational principles absolutely cannot be

compromised, no matter what the resource impact?

Checklist for Architecture Definition
• Is your architecture based on technologies already familiar to the developer community?
• Is your architecture based on proven technologies as opposed to innovative ones?
• Have you included in plans the costs of additional infrastructures for disaster recovery,

support, acceptance, and training?
• Where unfamiliar technologies are used, have you considered staff training & support?
• Is your architecture simple enough to be built and supported by development/operations

staff who have only recently been trained?

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 14

Evolution Perspective
The Evolution perspective addresses the concerns related to dealing with evolution during the
lifetime of a system and thus is relevant to most large-scale information systems because of
the amount of change that most systems need to handle.

Desired Quality The ability of the system to be flexible in the face of the inevitable change that all
systems experience after deployment, balanced against the costs of providing such
flexibility

Applicability Important for all systems to some extent; more important for longer lived and more
widely used systems

Concerns Product management, magnitude of change, dimensions of change, likelihood of
change, timescale for change, when to pay for change, changes driven by external
factors, development complexity, preservation of knowledge, and reliability of change

Activities Characterize the evolution needs, assess the current ease of evolution, consider the
evolution tradeoffs, and rework the architecture

Tactics Contain change, create extensible interfaces, apply design techniques which
facilitate change, apply metamodel-based architectural styles, build variation points
into the software, use standard extension points, achieve reliable change, and
preserve development environments

Problems & Pitfalls Prioritization of the wrong dimensions, changes that never happen, impacts of
evolution on critical quality properties, over-reliance on specific hardware or software,
lost development environments, and ad hoc release management

Applicability to Views
Context May need to show external entities, interfaces or interactions that will only form part

of the model in future versions of the system

Functional If the evolution required is significant, the functional structure will need to reflect this.

Information If environment or information evolution is needed, a flexible information model will be
required.

Concurrency Evolutionary needs may dictate particular element packaging or some constraints on
the concurrency structure (e.g., that it must be very simple).

Development Evolution requirements may have a significant impact on the development
environment that needs to be defined (e.g., enforcing portability guidelines).

Deployment This perspective rarely has a significant impact on the Deployment view because
system evolution usually affects structures described in other views.

Operational This perspective typically has less impact on the Operational view.

Checklist for Requirements Capture
• Have you considered which evolutionary dimensions are most important for your

system?
• Are you confident that you have done enough analysis to confirm that your prioritization

of evolutionary dimensions is valid?
• Have you identified specific changes that will be required and the magnitude of each?
• Have you assessed the likelihood of each of your changes actually being needed?

Checklist for Architecture Definition
• Have you performed an architectural assessment to establish whether your architecture

is sufficiently flexible to meet the evolutionary needs of your system?
• Where change is likely, does your design contain the change as far as possible?
• Have you considered choosing an inherently change-oriented architectural style? If so,

have you assessed the costs of doing so?
• Have you traded off the costs of your support for evolution against the needs of the

system as a whole? Are any critical quality properties negatively impacted by the design
you have adopted?

• Have you designed the architecture to accommodate only those changes you are
confident will be needed?

• Is your chosen evolutionary approach the cheapest and least risky option of delivering
the initial system and the future evolution required?

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 15

Internationalization Perspective
The Internationalization perspective is important for any system that will have users who
speak different languages or come from different countries. If systems are aimed at a specific
locale with no plans to move it into a wider area, this perspective has limited relevance.

Desired Quality The ability of the system to be independent from any particular language, country, or
cultural group

Applicability Any system that may need to be accessed by users or operational staff from different
cultures or parts of the world, or in multiple languages, either now or in the future

Concerns Character sets, text presentation and orientation, specific language needs, cultural
norms, automatic translation, currency conversions and exchange rates, and cultural
neutrality

Activities Identification of system touch points, identification of regions of concern,
internationalization of code, and localization of resources

Tactics Separation of presentation and content, use of message catalogs, system--‐wide use
of suitable character sets (e.g., Unicode), specialized display and presentation
hardware, and currency conversion mechanisms

Problems & Pitfalls Platforms not available in required locales, initial consideration of similar languages
only, internationalization performed late in the development process, incompatibilities
between locales on servers, insufficient consideration to currency exchange

Applicability to Views
Context Specialist display and data entry hardware may be required for non--‐Western

languages.

Functional The functional structure may need to reflect how presentation is separated from
content. General functionality should be independent of location.

Information The Information view defines which stored information needs to be internationalized
and how this will be achieved.

Concurrency This perspective has minimal impact on the Concurrency view.

Development The Development view will need to reflect the impact of these factors on the
development environment. (e.g. internationalized test data or user message
catalogues).

Deployment The deployment environment may need to take into consideration such items as
internationalized input and presentation devices.

Operational The Operational view may need to consider what functionality is provided to support
the maintenance and administration of localized information and services, and how
support will be provided to different locations.

Checklist for Requirements Capture
• Have you agreed with stakeholders on the extent to which systems must be operable in

different languages or countries, either now or in the future?
• Have you considered all points at which the system has any human interaction? For

example, have you considered operational management and monitoring of the system
or printed forms sent to customers to be filled in?

• Have you identified whether there is a requirement for non-Western character sets such
as Kanji, which have special requirements for entry and presentation of data?

• Does your analysis consider all types of interaction—screens, keyboards, printed
reports, and so on?

Checklist for Architecture Definition
• How confident are you that the architecture will meet all the requirements? Where you

are not, are mitigating activities in place (such as a proof-of-concept)?
• Do the interactive elements of your architecture sufficiently separate presentation and

content to meet the system’s internationalization objectives?
• If non-Western character sets such as Kanji must be supported, do your input and

output devices accommodate these?
• If standard text must be presented in multiple languages, have you designed facilities

for maintaining such information?

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 16

Location Perspective
The Location perspective addresses the problems that arise when systems or system
elements are physically distant from one another. If all elements are located in the same
place, you can usually disregard this perspective.

Desired Quality The ability of the system to overcome problems brought about by the absolute
location of its elements and the distances between them

Applicability Any system whose elements (or other systems with which it interacts) are or may be
physically far from one another

Concerns Time zones of operation, network link characteristics, resiliency to link failures, wide-
area interoperability, high-volume operations, intercountry concerns (political,
commercial, and legal), use of the public Internet, and physical variations between
locations

Activities Geographical mapping, estimation of link quality, estimation of latency,
benchmarking, and modeling of geographical characteristics

Tactics Avoidance of widely distributed transactions, architectural plans for wide-area link
failure, and allowance for offline operation

Problems & Pitfalls Invalid (wide-area) network assumptions; assumption of single point administration;
assumption of one primary time zone; assumption of end-to-end security; assumption
of an overnight batch period; failure to consider political, commercial, or legal
differences; assumption that public networks are high-bandwidth, low-latency, and
highly-available; and assumption of a standard physical environment

Applicability to Views
Context It may be useful to identify the location of external components in the Context View,

to highlight the risk of poor availability or network latency

Functional The Functional view is often presented independently of real-world location
concerns; typically, these are modelled in the Deployment view.

Information If data is highly distributed, the Information view should describe how information is
kept synchronized, what update latencies are expected, how temporary
discrepancies are handled, and how information is transformed between locations.

Concurrency Concurrent processing across highly distributed parts of the system is likely to be
problematic so the Concurrency view will need to reflect this.

Development If system development is spread over multiple locations, the Development view
needs to explain how software will be managed, integrated, and tested.

Deployment The Deployment view must consider significant issues such as latency, lead times,
and costs that are often associated with the rollout of wide-area networks.

Operational The Operational view needs to consider how widely distributed systems are
monitored, managed, and repaired.

Checklist for Requirements Capture
• Have you agreed on the physical location of each component of the architecture?
• Do you understand the requirements for throughput, response time, availability, and

resilience for all connections between geographically distributed components?
• Are the performance and reliability expectations of the wide-area network realistic and

achievable within the time and budget constraints?
• Have you understood how the system will accommodate multiple time zones? Does

this include consideration of online and batch modes of working?
• Have the bandwidth and response time requirements of high-volume operations such as

distributed backups or distributed software updates been understood and approved?
• Do the requirements account for the legal and political situations in different countries?
• Has the wide-area network infrastructure been factored into disaster recovery plans?

Checklist for Architecture Definition
• How confident are you that the architecture will meet all the requirements? Where you

are not, are mitigating activities in place (such as a proof-of-concept)?
• If there is a requirement to support remote offline operation, does the architecture

incorporate suitable features to later recover and resubmit information?
• Do the disaster recovery features of the architecture extend to wide-area connectivity?

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 17

Performance and Scalability Perspective
This perspective helps you to address the two related quality properties of performance and
scalability. These properties are important because, in large systems, they can cause more
unexpected, complex, and expensive problems late in the system lifecycle than most of the
other properties combined.

Desired Quality The ability of the system to predictably execute within its mandated performance
profile and to handle increased processing volumes in the future if required

Applicability Any system with complex, unclear, or ambitious performance requirements; systems
whose architecture includes elements whose performance is unknown; and systems
where future expansion is likely to be significant

Concerns Response time, throughput, scalability, predictability, hardware resource
requirements, and peak load behavior

Activities Capture the performance requirements, create the performance models, analyze the
performance models, conduct practical testing, assess against the requirements, and
rework the architecture

Tactics Optimize repeated processing, reduce contention via replication, prioritize
processing, consolidate related workload, distribute processing over time, minimize
the use of shared resources, reuse resources and results, partition and parallelize,
scale up or scale out, use asynchronous processing, relax transactional consistency,
and make design compromises

Problems & Pitfalls Imprecise performance and scalability goals, unrealistic models, use of simple
measures for complex cases, inappropriate partitioning, invalid environment and
platform assumptions, too much indirection, concurrency-related contention,
database contention, transaction overhead, careless allocation of resources, and
disregard for network and in-process invocation differences

Applicability to Views
Context Identifies external interfaces and will highlight the performance requirements or

potential problems that the use of these interfaces implies.

Functional May reveal the need for changes and compromises to your ideal functional structure;
functional models also provide input to the creation of performance models.

Information Allows identification of shared resources and the transactional requirements of each.
May suggest possible replication or distribution approaches.

Concurrency Problems such as contention may cause concurrency redesign. View content may
provide elements of performance models and calibration metrics.

Development May need to contain performance and scalability patterns and anti-patterns.

Deployment Performance models and calibration metrics are derived from the Deployment view.
Applying this perspective will often suggest changes to the deployment environment.

Operational Highlights the need for performance monitoring and management capabilities.

Checklist for Requirements Capture
• Have you identified performance targets, at a high level at least, with key stakeholders?
• Have you considered targets for both response time and throughput?
• Do your targets distinguish between observed performance (i.e., synchronous tasks)

and actual performance (i.e., taking asynchronous activity into account)?
• Have you assessed your performance targets for reasonableness?
• Have you set stakeholder expectations of what is feasible in your architecture?
• Have you defined performance targets in the context of a particular load on the system?

Checklist for Architecture Definition
• Have you identified the major potential performance problems in your architecture?
• Do you know what workload your system can process? Have you prioritized the

different classes of work?
• Do you know how far your proposed architecture can be scaled without major changes?
• Have you identified and validated the performance-related assumptions made?
• Have you looked for opportunities to relax transactional consistency, especially if you

are designing a large scale or distributed system?
• Have you reviewed your architecture for common performance pitfalls?

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 18

Regulation Perspective
Unlike other system qualities, compliance with the law is an area where you cannot make
compromises. Although you may be able to live with a system that is slow, occasionally
unreliable, or potentially insecure, a system that does not comply with legal regulations may
be prevented from going into production or may expose the organization to risk of
prosecution.

Desired Quality The ability of the system to conform to local and international laws, quasi-legal
regulations, company policies, and other rules and standards

Applicability Any system that may be subject to laws or regulations

Concerns Statutory industry regulation, privacy and data protection, cross-border legal
restrictions, data retention and accountability, and organizational policy compliance

Activities Compliance auditing

Tactics Assessment of architecture against regulatory and legislative requirements

Problems & Pitfalls Not understanding regulations or resulting obligations, and being unaware of
statutory regulations

Applicability to Views
Context May unearth requirements to internal or external auditing or regulatory reporting

systems.

Functional Regulations can have a significant impact on what the system does and how it
works.

Information Especially in Europe, there is a great deal of legislation related to the retention, use,
and manipulation of personal information. The impact on the Information view may
include privacy, access control, retention and archive, audit, availability, and
distribution.

Concurrency This perspective has little or no impact on the Concurrency view.

Development This perspective has little or no impact on the Development view, although if
production (live) test data is to be used, there may be restrictions on this.

Deployment This perspective has little or no impact on the Deployment view, although health and
safety legislation could have an impact on the hardware deployed.

Operational Specific operational tools and processes are often required to manage and oversee
regulatory reporting activities (e.g. monitor conformance to reporting SLAs).

Checklist for Requirements Capture
• Have you identified all legislation that applies to the functionality the system supports

(e.g., employment law for a human resources system, or company law for a financial
system) and assessed the architecture for compliance with these?

• Have you identified the generic legislation that applies to software systems (e.g., health
and safety, the environment, data protection) and assessed the architecture for
compliance with these?

• Have you determined whether the system can be considered as touching on other
countries in any way, and if so, what legislation it may be subject to as a result?

• Have you considered international law such as technology export restrictions?
• Have you identified the relevant internal business and technology regulations and

standards? Have you assessed the architecture for compliance with these?
• If legislation requires registration with governmental agencies (e.g., the Data Protection

Registrar in the United Kingdom), have you applied for this registration, or do you have
plans to make this happen?

• Do your archive and retention plans conform to all applicable legislation?

Checklist for Architecture Definition
• Does your architecture accommodate any required automated interfaces to regulatory

bodies (e.g., automatic upload of accounting or taxation information)? Do these
interfaces conform to prescribed business and technical standards?

• Does the architecture conform to any mandated technical standards?

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 19

Security Perspective
The security perspective guides you as you consider the set of processes and technologies
that allow the owners of resources in the system to reliably control who can perform what
actions on particular resources.

Desired Quality The ability of the system to reliably control, monitor, and audit who can perform what
actions on which resources & the ability to detect and recover from security breaches

Applicability Any systems with publicly accessible interfaces, with multiple users where the
identity of the user is significant, or where access to operations or information needs
to be controlled

Concerns Resources, principals, policies, threats, confidentiality, integrity, availability,
accountability, security mechanisms, and detection and recovery

Activities Identify sensitive resources, define the security policy, identify threats to the system,
design the security implementation, and assess the security risks

Tactics Apply recognized security principles, authenticate the principals, authorize access,
ensure information secrecy, ensure information integrity, ensure accountability,
protect availability, integrate security technologies, provide security administration,
and use third-party security infrastructure

Problems & Pitfalls Complex security policies, unproven security technologies, system not designed for
failure, lack of administration facilities, technology-driven approach, failure to
consider time sources, overreliance on technology, no clear requirements or models,
security as an afterthought, ignoring the insider threat, assuming the client is secure,
security in the application code, piecemeal security, ad hoc security technology

Applicability to Views
Context Allows you to clearly identify external connections and consider how they could

become system vulnerabilities and how they will need to be protected from malicious
use.

Functional Reveals which functional elements need to be protected. Functional structure may be
impacted by the need to implement your security policies.

Information Reveals what data needs to be protected. Information models are often modified as a
result of security design (e.g., partitioning information by sensitivity).

Concurrency Security design may indicate the need to isolate different pieces of the system into
different runtime elements, so affecting the system’s concurrency structure.

Development Captures security related development guidelines and constraints.

Deployment May need major changes to accommodate security-oriented hardware or software, or
to address security risks.

Operational Needs to make the security assumptions and responsibilities clear, so that these
aspects of the security implementation can be reflected in operational processes.

Checklist for Requirements Capture
• Have you identified the sensitive resources contained in the system?
• Have you identified the sets of principals that need access to the resources?
• Have you identified the system’s needs for information integrity guarantees?
• Have you identified the system’s availability needs?
• Is there a security policy, including access control and information integrity needs?
• Is the security policy as simple as possible?
• Have you worked through a formal threat model to identify security risks?
• Have you reviewed your security requirements with external experts?

Checklist for Architecture Definition
• Have you addressed each threat identified in the threat model to the extent required?
• Have you used as much third-party security technology as possible?
• Have you produced an integrated overall design for the security solution?
• Have you considered all standard security principles when designing the infrastructure?
• Is your security infrastructure as simple as possible?
• Have you defined how to identify and recover from security breaches?
• Have you applied the results of the Security perspective to all of the affected views?
• Have external experts reviewed your security design?

Viewpoints and Perspectives Reference Card

http://www.viewpoints-and-perspectives.info page 20

Usability Perspective
Applying the Usability perspective ensures that the system allows those who interact with it to
do so effectively. This perspective tends to focus on the end users of the system but should
also address the concerns of any others who interact with it directly or indirectly, such as
maintainers and support personnel.

Desired Quality The ease with which people who interact with the system can work effectively

Applicability Any system that has significant interaction with humans (users, operational staff, and
so on) or that is exposed to members of the public

Concerns User interface usability, business process flow, information quality, alignment of the
human–computer interface (HCI) with working practices, alignment of the HCI with
users’ skills, maximization of the perceived usability, and ease of changing user
interfaces

Activities User interface design, participatory design, interface evaluation, and prototyping

Tactics Separation of user interface from functional processing

Problems & Pitfalls Failure to consider user capabilities, failure to use human-computer interaction
specialists, failure to consider how concerns from other perspectives affect usability,
overly complex interfaces, assumption of a single type of user access, design based
on technology rather than needs, inconsistent interfaces, disregard for organizational
standards, and failure to separate interface and processing implementations

Applicability to Views
Context Does not typically have much of an impact on the Context view.

Functional The functional structure indicates where the system’s external interfaces are and
thus where usability needs to be considered. It may be impacted by usability needs
(e.g., the addition of interface services to support certain interaction styles) but is
unlikely to be changed significantly.

Information Information quality (the provision of accurate, relevant, consistent, and timely data)
can have a large impact on usability.

Concurrency This perspective typically has little or no impact on the Concurrency view.

Development The results of applying the Usability perspective impact the Development view in
terms of the guidelines, standards, and patterns that ensure the creation of a
consistent and appropriate set of user interfaces for the system.

Deployment This perspective has little or no impact on the Deployment view, although usability
concerns could require changes to element deployment (e.g., due to response time
requirements).

Operational The Usability perspective should consider the usability needs of the system’s
administrators.

Checklist for Requirements Capture
• Have you identified all of the system’s key touch points?
• Have you identified all of the different types of users who will interact with the system?
• Do you understand the type of usage (occasional, regular, transactional, unstructured)

for each of the touch points?
• Have you taken into account the needs of support and maintenance staff and other

second-line users?
• Do you understand the capabilities, experience, and expertise of the system’s users?

Have you correctly mapped these into requirements for presentation and support?
• Have you taken into account any corporate standards for presentation and interaction,

particularly for systems exposed to the public?

Checklist for Architecture Definition
• For Web and mobile platforms, have you considered the variation in bandwidth,

hardware capabilities (screen resolution), and rendering software?
• Do the interface designs align in a sensible way with the business processes they are

automating?
• If your system is exposed to the general public, have you obtained any necessary

approvals from your marketing department for the use of company logos and so on?

