

Writing Good Software Engineering Research Papers
 Minitutorial

Mary Shaw
Carnegie Mellon University

mary.shaw@cs.cmu.edu

Abstract
Software engineering researchers solve problems of
several different kinds. To do so, they produce several
different kinds of results, and they should develop
appropriate evidence to validate these results. They often
report their research in conference papers. I analyzed the
abstracts of research papers submitted to ICSE 2002 in
order to identify the types of research reported in the
submitted and accepted papers, and I observed the
program committee discussions about which papers to
accept. This report presents the research paradigms of
the papers, common concerns of the program committee,
and statistics on success rates. This information should
help researchers design better research projects and write
papers that present their results to best advantage.

Keywords: research design, research paradigms,
validation, software profession, technical writing

1. Introduction
In software engineering, research papers are customary

vehicles for reporting results to the research community.
In a research paper, the author explains to an interested
reader what he or she accomplished, and how the author
accomplished it, and why the reader should care. A good
research paper should answer a number of questions:

♦ What, precisely, was your contribution?
• What question did you answer?
• Why should the reader care?
• What larger question does this address?

♦ What is your new result?
• What new knowledge have you contributed that

the reader can use elsewhere?
• What previous work (yours or someone else’s)

do you build on? What do you provide a superior
alternative to?

• How is your result different from and better than
this prior work?

• What, precisely and in detail, is your new result?
♦ Why should the reader believe your result?

• What standard should be used to evaluate your
claim?

• What concrete evidence shows that your result
satisfies your claim?

If you answer these questions clearly, you’ll probably
communicate your result well. If in addition your result
represents an interesting, sound, and significant contribu-
tion to our knowledge of software engineering, you’ll
have a good chance of getting it accepted for publication
in a conference or journal.

Other fields of science and engineering have well-
established research paradigms. For example, the
experimental model of physics and the double-blind
studies of medicines are understood, at least in broad
outline, not only by the research community but also by
the public at large. In addition to providing guidance for
the design of research in a discipline, these paradigms
establish the scope of scientific disciplines through a
social and political process of "boundary setting" [5].

Software engineering, however, has not yet developed
this sort of well-understood guidance. I previously [19,
20] discussed early steps toward such understanding,
including a model of the way software engineering
techniques mature [17, 18] and critiques of the lack of
rigor in experimental software engineering [1, 22, 23, 24,
25]. Those discussions critique software engineering
research reports against the standards of classical
paradigms. The discussion here differs from those in that
this discussion reports on the types of papers that are
accepted in practices as good research reports. Another
current activity, the Impact Project [7] seeks to trace the
influence of software engineering research on practice.
The discussion here focuses on the paradigms rather than
the content of the research

This report examines how software engineers answer
the questions above, with emphasis on the design of the
research project and the organization of the report. Other
sources (e.g., [4]) deal with specific issues of technical
writing. Very concretely, the examples here come from
the papers submitted to ICSE 2002 and the program
committee review of those papers. These examples report
research results in software engineering. Conferences
often include other kinds of papers, including experience
reports, materials on software engineering education, and
opinion essays.

Proceedings of the 25th International Conference on Software Engineering, IEEE Computer Society, 2003, pp. 726-736.

2. What, precisely, was your contribution?
Before reporting what you did, explain what problem

you set out to solve or what question you set out to answer
—and why this is important.

2.1 What kinds of questions do software
engineers investigate?

Generally speaking, software engineering researchers
seek better ways to develop and evaluate software. Devel-
opment includes all the synthetic activities that involve
creating and modifying the software, including the code,
design documents, documentation, etc. Evaluation

includes all the analytic activities associated with predict-
ing, determining, and estimating properties of the software
systems, including both functionality and extra-functional
properties such as performance or reliability.

Software engineering research answers questions about
methods of development or analysis, about details of
designing or evaluating a particular instance, about gener-
alizations over whole classes of systems or techniques, or
about exploratory issues concerning existence or feasibil-
ity. Table 1 lists the types of research questions that are
asked by software engineering research papers and
provides specific question templates.

Table 1. Types of software engineering research questions
Type of question Examples
Method or means of

development
How can we do/create/modify/evolve (or automate doing) X?

What is a better way to do/create/modify/evolve X?
Method for analysis

or evaluation
How can I evaluate the quality/correctness of X?

How do I choose between X and Y?
Design, evaluation, or

analysis of a
particular instance

How good is Y? What is property X of artifact/method Y?
What is a (better) design, implementation, maintenance, or adaptation for application X?
 How does X compare to Y?
What is the current state of X / practice of Y?

Generalization or
characterization

Given X, what will Y (necessarily) be?
What, exactly, do we mean by X? What are its important characteristics?
What is a good formal/empirical model for X?
What are the varieties of X, how are they related?

Feasibility study or
exploration

Does X even exist, and if so what is it like?
Is it possible to accomplish X at all?

The first two types of research produce methods of
development or of analysis that the authors investigated in
one setting, but that can presumably be applied in other
settings. The third type of research deals explicitly with
some particular system, practice, design or other instance
of a system or method; these may range from narratives
about industrial practice to analytic comparisons of
alternative designs. For this type of research the instance
itself should have some broad appeal—an evaluation of
Java is more likely to be accepted than a simple evaluation
of the toy language you developed last summer.
Generalizations or characterizations explicitly rise above
the examples presented in the paper. Finally, papers that
deal with an issue in a completely new way are sometimes
treated differently from papers that improve on prior art,
so "feasibility" is a separate category (though no such
papers were submitted to ICSE 2002).

Newman's critical comparison of HCI and traditional
engineering papers [12] found that the engineering papers
were mostly incremental (improved model, improved
technique), whereas many of the HCI papers broke new
ground (observations preliminary to a model, brand new

technique). One reasonable interpretation is that the
traditional engineering disciplines are much more mature
than HCI, and so the character of the research might
reasonably differ [17, 18]. Also, it appears that different
disciplines have different expectations about the "size" of
a research result—the extent to which it builds on existing
knowledge or opens new questions. In the case of ICSE,
the kinds of questions that are of interest and the minimum
interesting increment may differ from one area to another.

2.2 Which of these are most common?
The most common kind of ICSE paper reports an

improved method or means of developing software—that
is, of designing, implementing, evolving, maintaining, or
otherwise operating on the software system itself. Papers
addressing these questions dominate both the submitted
and the accepted papers. Also fairly common are papers
about methods for reasoning about software systems,
principally analysis of correctness (testing and
verification). Analysis papers have a modest acceptance
edge in this very selective conference.

Table 2 gives the distribution of submissions to ICSE
2002, based on reading the abstracts (not the full papers—
but remember that the abstract tells a reader what to ex-
pect from the paper). For each type of research question,

the table gives the number of papers submitted and ac-
cepted, the percentage of the total paper set of each kind,
and the acceptance ratio within each type of question.
Figures 1 and 2 show these counts and distributions.

Table 2. Types of research questions represented in ICSE 2002 submissions and acceptances
Type of question Submitted Accepted Ratio Acc/Sub
Method or means of development 142(48%) 18 (42%) (13%)
Method for analysis or evaluation 95 (32%) 19 (44%) (20%)
Design, evaluation, or analysis of a particular instance 43 (14%) 5 (12%) (12%)
Generalization or characterization 18 (6%) 1 (2%) (6%)
Feasibility study or exploration 0 (0%) 0 (0 %) (0%)
 TOTAL 298(100.0%) 43 (100.0%) (14%)

Question

0

50

100

150

200

250

300

Devel Analy Eval Gener Feas Total

Accepted Rejected

Question

0%

20%

40%

60%

80%

100%

Devel Analy Eval Gener Feas Total
Accepted Rejected

Figure 1. Counts of acceptances and rejections

by type of research question
Figure 2. Distribution of acceptances and rejections

by type of research question

2.3 What do program committees look for?
Acting on behalf of prospective readers, the program

committee looks for a clear statement of the specific
problem you solved—the question about software devel-
opment you answered—and an explanation of how the
answer will help solve an important software engineering
problem. You'll devote most of your paper to describing
your result, but you should begin by explaining what
question you're answering and why the answer matters.

If the program committee has trouble figuring out
whether you developed a new evaluation technique and
demonstrated it on an example, or applied a technique you
reported last year to a new real-world example, or
evaluated the use of a well-established evaluation
technique, you have not been clear.

3. What is your new result?
Explain precisely what you have contributed to the

store of software engineering knowledge and how this is
useful beyond your own project.

3.1 What kinds of results do software engineers
produce?

The tangible contributions of software engineering
research may be procedures or techniques for develop-
ment or analysis; they may be models that generalize from
specific examples, or they may be specific tools, solutions,
or results about particular systems. Table 3 lists the types
of research results that are reported in software engineer-
ing research papers and provides specific examples.

3.2 Which of these are most common?
By far the most common kind of ICSE paper reports a

new procedure or technique for development or analysis.
Models of various degrees of precision and formality were
also common, with better success rates for quantitative
than for qualitative models. Tools and notations were well
represented, usually as auxiliary results in combination
with a procedure or technique. Table 4 gives the distribu-
tion of submissions to ICSE 2002, based on reading the
abstracts (but not the papers), followed by graphs of the
counts and distributions in Figures 3 and 4.

Table 3. Types of software engineering research results
Type of result Examples
Procedure or

technique
New or better way to do some task, such as design, implementation, maintenance,

measurement, evaluation, selection from alternatives; includes techniques for
implementation, representation, management, and analysis; a technique should be
operational—not advice or guidelines, but a procedure

Qualitative or
descriptive model

Structure or taxonomy for a problem area; architectural style, framework, or design pattern;
non-formal domain analysis, well-grounded checklists, well-argued informal
generalizations, guidance for integrating other results, well-organized interesting
observations

Empirical model Empirical predictive model based on observed data
Analytic model Structural model that permits formal analysis or automatic manipulation
Tool or notation Implemented tool that embodies a technique; formal language to support a technique or model

(should have a calculus, semantics, or other basis for computing or doing inference)
Specific solution,

prototype, answer,
or judgment

Solution to application problem that shows application of SE principles – may be design,
prototype, or full implementation; careful analysis of a system or its development, result of
a specific analysis, evaluation, or comparison

Report Interesting observations, rules of thumb, but not sufficiently general or systematic to rise to the
level of a descriptive model.

Table 4. Types of research results represented in ICSE 2002 submissions and acceptances
Type of result Submitted Accepted Ratio Acc/Sub
Procedure or technique 152(44%) 28 (51%) 18%
Qualitative or descriptive model 50 (14%) 4 (7%) 8%
Empirical model 4 (1%) 1 (2%) 25%
Analytic model 48 (14%) 7 (13%) 15%
Tool or notation 49 (14%) 10 (18%) 20%
Specific solution, prototype, answer, or judgment 34 (10%) 5 (9%) 15%
Report 11 (3%) 0 (0%) 0%
 TOTAL 348(100.0%) 55 (100.0%) 16%

Result

0
50

100
150
200
250
300
350

Tec
h

Qua
l m

od

Emp m
od

Ana
l m

od
Too

l

Spe
c s

ol

Rep
ort

Tota
l

Accepted Rejected

Result

0%

20%

40%

60%

80%

100%

Tec
h

Qua
l m

od

Emp m
od

Ana
l m

od
Too

l

Spe
c s

ol

Rep
ort

Tota
l

Accepted Rejected

Figure 3. Counts of acceptances and rejections

by type of result
Figure 4. Distribution of acceptances and rejections

by type of result

The number of results is larger than the number of
papers because 50 papers included a supporting result,
usually a tool or a qualitative model.

Research projects commonly produce results of several
kinds. However, conferences, including ICSE, usually
impose strict page limits. In most cases, this provides too
little space to allow full development of more than one
idea, perhaps with one or two supporting ideas. Many
authors present the individual ideas in conference papers,
and then synthesize them in a journal article that allows
space to develop more complex relations among results.

3.3 What do program committees look for?
The program committee looks for interesting, novel,

exciting results that significantly enhance our ability to
develop and maintain software, to know the quality of the
software we develop, to recognize general principles
about software, or to analyze properties of software.

You should explain your result in such a way that
someone else could use your ideas. Be sure to explain
what’s novel or original – is it the idea, the application of
the idea, the implementation, the analysis, or what?

Define critical terms precisely. Use them consistently.
The more formal or analytic the paper, the more important
this is.

Here are some questions that the program committee
may ask about your paper:

What, precisely, do you claim to contribute?
Does your result fully satisfy your claims? Are the

definitions precise, and are terms used consistently?
Authors tend to have trouble in some specific

situations. Here are some examples, with advice for
staying out of trouble:

♦ If your result ought to work on large systems, explain
why you believe it scales.

♦ If you claim your method is "automatic", using it
should not require human intervention. If it's
automatic when it's operating but requires manual
assistance to configure, say so. If it's automatic
except for certain cases, say so, and say how often
the exceptions occur.

♦ If you claim your result is "distributed", it probably
should not have a single central controller or server.
If it does, explain what part of it is distributed and
what part is not.

♦ If you're proposing a new notation for an old
problem, explain why your notation is clearly
superior to the old one.

♦ If your paper is an "experience report", relating the
use of a previously-reported tool or technique in a
practical software project, be sure that you explain
what idea the reader can take away from the paper to

use in other settings. If that idea is increased
confidence in the tool or technique, show how your
experience should increase the reader's confidence
for applications beyond the example of the paper.

What’s new here?
The program committee wants to know what is novel

or exciting, and why. What, specifically, is the
contribution? What is the increment over earlier work by
the same authors? by other authors? Is this a sufficient
increment, given the usual standards of subdiscipline?

Above all, the program committee also wants to know
what you actually contributed to our store of knowledge
about software engineering. Sure, you wrote this tool and
tried it out. But was your contribution the technique that is
embedded in the tool, or was it making a tool that’s more
effective than other tools that implement the technique, or
was it showing that the tool you described in a previous
paper actually worked on a practical large-scale problem?
It’s better for you as the author to explain than for the
program committee to guess. Be clear about your claim …

Awful ▼ • I completely and generally solved …
(unless you actually did!)

Bad ▼ • I worked on galumphing.
(or studied, investigated, sought,
explored)

Poor ▼ • I worked on improving galumphing.
(or contributed to, participated in,
helped with)

Good ▲ • I showed the feasibility of composing
blitzing with flitzing.

• I significantly improved the accuracy of
the standard detector.
(or proved, demonstrated, created,
established, found, developed)

Better ▲ • I automated the production of flitz
tables from specifications.

• With a novel application of the blivet
transform, I achieved a 10% increase
in speed and a 15% improvement in
coverage over the standard method.

Use verbs that show results and achievement, not just
effort and activity.

 "Try not. Do, or do not. There is no try." -- Yoda .

What has been done before? How is your work different
or better?

What existing technology does your research build on?
What existing technology or prior research does your
research provide a superior alternative to? What’s new
here compared to your own previous work? What
alternatives have other researchers pursued, and how is
your work different or better?

As in other areas of science and engineering, software
engineering knowledge grows incrementally. Program
committees are very interested in your interpretation of
prior work in the area. They want to know how your work
is related to the prior work, either by building on it or by
providing an alternative. If you don’t explain this, it’s
hard for the program committee to understand how you’ve
added to our store of knowledge. You may also damage
your credibility if the program committee can’t tell
whether you know about related work.

Explain the relation to other work clearly …
Awful ▼ The galumphing problem has attracted

much attention [3,8,10,18,26,32,37]
Bad ▼ Smith [36] and Jones [27] worked on

galumphing.
Poor ▼ Smith [36] addressed galumphing by

blitzing, whereas Jones [27] took a
flitzing approach.

Good ▲ Smith’s blitzing approach to galumphing
[36] achieved 60% coverage [39].
Jones [27] achieved 80% by flitzing,
but only for pointer-free cases [16].

Better ▲ Smith’s blitzing approach to galumphing
[36] achieved 60% coverage [39].
Jones [27] achieved 80% by flitzing,
but only for pointer-free cases [16].
We modified the blitzing approach to
use the kernel representation of flitzing
and achieved 90% coverage while
relaxing the restriction so that only
cyclic data structures are prohibited.

What, precisely, is the result?

Explain what your result is and how it works. Be
concrete and specific. Use examples.

If you introduce a new model, be clear about its power.
How general is it? Is it based on empirical data, on a
formal semantics, on mathematical principles? How
formal is it—a qualitative model that provides design
guidance may be as valuable as a mathematical model of
some aspect of correctness, but they will have to satisfy
different standards of proof. Will the model scale up to
problems of size appropriate to its domain?

If you introduce a new metric, define it precisely. Does
it measure what it purports to measure and do so better
than the alternatives? Why?

If you introduce a new architectural style, design
pattern, or similar design element, treat it as if it were a
new generalization or model. How does it differ from the
alternatives? In what way is it better? What real problem
does it solve? Does it scale?

If your contribution is principally the synthesis or
integration of other results or components, be clear about
why the synthesis is itself a contribution. What is novel,
exciting, or nonobvious about the integration? Did you
generalize prior results? Did you find a better
representation? Did your research improve the individual
results or components as well as integrating them? A
paper that simply reports on using numerous elements
together is not enough, even if it's well-engineered. There
must be an idea or lesson or model that the reader can take
from the paper and apply to some other situation.

If your paper is chiefly a report on experience
applying research results to a practical problem, say what
the reader can learn from the experience. Are your
conclusions strong and well-supported? Do you show
comparative data and/or statistics? An anecdotal report on
a single project is usually not enough. Also, if your report
mixes additional innovation with validation through
experience, avoid confusing your discussion of the
innovation with your report on experience. After all, if
you changed the result before you applied it, you're
evaluating the changed result. And if you changed the
result while you were applying it, you may have
confounded the experiences with the two versions.

If a tool plays a featured role in your paper, what is
the role of the tool? Does it simply support the main
contribution, or is the tool itself a principal contribution,
or is some aspect of the tool’s use or implementation the
main point? Can a reader apply the idea without the tool?
If the tool is a central part of result, what is the technical
innovation embedded in the tool or its implementation?

If a system implementation plays a featured role in
your paper, what is the role of the implementation? Is the
system sound? Does it do what you claim it does? What
ideas does the system demonstrate?

♦ If the implementation illustrates an architecture or
design strategy, what does it reveal about the
architecture? What was the design rationale? What
were the design tradeoffs? What can the reader apply
to a different implementation?

♦ If the implementation demonstrates an
implementation technique, how does it help the
reader use the technique in another setting?

♦ If the implementation demonstrates a capability or
performance improvement, what concrete evidence
does it offer to support the claim?

♦ If the system is itself the result, in what way is it a
contribution to knowledge? Does it, for example,
show you can do something that no one has done
before (especially if people doubted that this could
be done)?

4. Why should the reader believe your result?
Show evidence that your result is valid—that it actually

helps to solve the problem you set out to solve.

4.1. What kinds of validation do software
engineers do?

Software engineers offer several kinds of evidence in
support of their research results. It is essential to select a
form of validation that is appropriate for the type of

research result and the method used to obtain the result.
As an obvious example, a formal model should be
supported by rigorous derivation and proof, not by one or
two simple examples. On the other hand, a simple
example derived from a practical system may play a major
role in validating a new type of development method.
Table 5 lists the types of research validation that are used
in software engineering research papers and provides
specific examples. In this table, the examples are keyed to
the type of result they apply to.

Table 5. Types of software engineering research validation
Type of validation Examples
Analysis I have analyzed my result and find it satisfactory through rigorous analysis, e.g. …

For a formal model … rigorous derivation and proof
For an empirical model … data on use in controlled situation
For a controlled experiment … carefully designed experiment with statistically significant
 results

Evaluation Given the stated criteria, my result...
For a descriptive model … adequately describes phenomena of interest …
For a qualitative model … accounts for the phenomena of interest…
For an empirical model … is able to predict … because …, or
 … generates results that fit actual data …

Includes feasibility studies, pilot projects
Experience My result has been used on real examples by someone other than me, and the evidence of its

correctness/usefulness/effectiveness is …
For a qualitative model … narrative
For an empirical model or tool … data, usually statistical, on practice
For a notation or technique … comparison of systems in actual use

Example Here’s an example of how it works on
For a technique or procedure …a "slice of life" example based on a real system …
For a technique or procedure …a system that I have been developing …
For a technique or procedure … a toy example, perhaps motivated by reality

The "slice of life" example is most likely to be convincing, especially if accompanied by an
explanation of why the simplified example retains the essence of the problem being solved.
Toy or textbook examples often fail to provide persuasive validation, (except for standard
examples used as model problems by the field).

Persuasion I thought hard about this, and I believe passionately that ...
For a technique … if you do it the following way, then …
For a system … a system constructed like this would …
For a model … this example shows how my idea works

Validation purely by persuasion is rarely sufficient for a research paper. Note, though, that if the
original question was about feasibility, a working system, even without analysis, can suffice

Blatant assertion No serious attempt to evaluate result. This is highly unlikely to be acceptable

4.2 Which of these are most common?
Alas, well over a quarter of the ICSE 2002 abstracts

give no indication of how the paper's results are validated,
if at all. Even when the abstract mentions that the result
was applied to an example, it was not always clear
whether the example was a textbook example, or a report
on use in the field, or something in between.

The most successful kinds of validation were based on
analysis and real-world experience. Well-chosen examples
were also successful. Persuasion was not persuasive, and
narrative evaluation was only slightly more successful.
Table 6 gives the distribution of submissions to ICSE
2002, based on reading the abstracts (but not the papers),
followed by graphs of the counts and distributions.
Figures 5 and 6 show these counts and distributions.

Table 6. Types of research validation represented in ICSE 2002 submissions and acceptances
Type of validation Submitted Accepted Ratio Acc/Sub
Analysis 48 (16%) 11 (26%) 23%
Evaluation 21 (7%) 1 (2%) 5%
Experience 34 (11%) 8 (19%) 24%
Example 82 (27%) 16 (37%) 20%
Some example, can't tell whether it's toy or actual use 6 (2%) 1 (2%) 17%
Persuasion 25 (8%) 0 (0.0%) 0%
No mention of validation in abstract 84 (28%) 6 (14%) 7%
 TOTAL 300(100.0%) 43 (100.0%) 14%

Validation

0
50

100
150
200
250
300

Ana
lys

is

Exp
eri

en
ce

Exa
mple

Ex,
kin

d ?

Eva
lua

te

Pers
ua

de

No m
en

tio
n

Tota
l

Accepted Rejected

Validation

0%

20%

40%

60%

80%

100%

Ana
lys

is

Exp
eri

en
ce

Exa
mple

Ex,
kin

d ?

Eva
lua

te

Pers
ua

de

No m
en

tio
n

Tota
l

Accepted Rejected

Figure 5. Counts of acceptances and rejections

by type of validation
Figure 6. Distribution of acceptances and rejections

by type of validation

4.3 What do program committees look for?
The program committee looks for solid evidence to

support your result. It's not enough that your idea works
for you, there must also be evidence that the idea or the
technique will help someone else as well.

The statistics above show that analysis, actual
experience in the field, and good use of realistic examples
tend to be the most effective ways of showing why your
result should be believed. Careful narrative, qualitative
analysis can also work if the reasoning is sound.

Why should the reader believe your result?
Is the paper argued persuasively? What evidence is

presented to support the claim? What kind of evidence is
offered? Does it meet the usual standard of the
subdiscipline?

Is the kind of evaluation you're doing described clearly
and accurately? "Controlled experiment" requires more
than data collection, and "case study" requires more than
anecdotal discussion. Pilot studies that lay the groundwork
for controlled experiments are often not publishable by
themselves.

Is the validation related to the claim? If you're claiming
performance improvement, validation should analyze
performance, not ease of use or generality. And
conversely.

Is this such an interesting, potentially powerful idea
that it should get exposure despite a shortage of concrete
evidence?

Authors tend to have trouble in some specific
situations. Here are some examples, with advice for
staying out of trouble:

♦ If you claim to improve on prior art, compare your
result objectively to the prior art.

♦ If you used an analysis technique, follow the rules of
that analysis technique. If the technique is not a
common one in software engineering (e.g., meta-
analysis, decision theory, user studies or other
behavioral analyses), explain the technique and
standards of proof, and be clear about your
adherence to the technique.

♦ If you offer practical experience as evidence for your
result, establish the effect your research has. If at all
possible, compare similar situations with and without
your result.

♦ If you performed a controlled experiment, explain the
experimental design. What is the hypothesis? What is
the treatment? What is being controlled? What data
did you collect, and how did you analyze it? Are the
results significant? What are the potentially
confounding factors, and how are they handled? Do
the conclusions follow rigorously from the
experimental data?

♦ If you performed an empirical study, explain what
you measured, how you analyzed it, and what you
concluded. What data did you collect, and how? How
is the analysis related to the goal of supporting your
claim about the result? Do not confuse correlation
with causality.

♦ If you use a small example for explaining the result,
provide additional evidence of its practical use and
scalability.

5. How do you combine the elements into a
research strategy?

It is clear that not all combinations of a research
question, a result, and a validation strategy lead to good
research. Software engineering has not developed good
general guidance on this question.

Tables 1, 3, and 5 define a 3-dimensional space. Some
portions of that space are densely populated: One
common paradigm is to find a better way to perform some
software development or maintenance task, realize this in
a concrete procedure supported by a tool, and evaluate the
effectiveness of this procedure and tool by determining
how its use affects some measure (e.g., error rates) of
quality. Another common paradigm is to find a better way
to evaluate a formalizable property of a software system,
develop a formal model that supports inference, and to
show that the new model allows formal analysis or proof
of the properties of interest.

Clearly, the researcher does not have free choice to
mix and match the techniques—validating the correctness
of a formal model through field study is as inappropriate
as attempting formal verification of a method based on
good organization of rules of thumb.

Selecting a type of result that will answer a given
question usually does not seem to present much difficulty,
at least for researchers who think carefully about the
choice. Blindly adopting the research paradigm someone
used last year for a completely different problem is a
different case, of course, and it can lead to serious misfits.

Choosing a good form of validation is much harder,
and this is often a source of difficulty in completing a
successful paper. Table 6 shows some common good
matches. This does not, unfortunately, provide complete
guidance.

When I advise PhD students on the validation section
of their theses, I offer the following heuristic: Look
carefully at the short statement of the result—the principal
claim of the thesis. This often has two or three clauses
(e.g., I found an efficient and complete method …"); if so,
each presents a separate validation problem. Ask of each
clause whether it is a global statement ("always", "fully"),
a qualified statement ("a 25% improvement", "for
noncyclic structures…"), or an existential statement {"we
found an instance of"). Global statements often require
analytic validation, qualified statements can often be
validated by evaluation or careful examination of
experience, and existential statements can sometimes be
validated by a single positive example. A frequent result
of this discussion is that students restate the thesis claims
to reflect more precisely what the theses actually achieve.
If we have this discussion early enough in the thesis
process, students think about planning the research with
demonstrable claims in mind.

Concretely, Table 7 shows the combinations that were
represented among the accepted papers at ICSE 2002,
omitting the 7 for which the abstracts were unclear about
validation:

Table 7. Paradigms of ICSE2002 acceptances
Question Result Validation #
Devel method Procedure Analysis 2
Devel method Procedure Experience 3
Devel method Procedure Example 3
Devel method Qual model Experience 2
Devel method Analytic model Experience 2
Devel method Notation or tool Experience 1
Analysis method Procedure Analysis 5
Analysis method Procedure Evaluation 1
Analysis method Procedure Experience 2
Analysis method Procedure Example 6
Analysis method Analytic model Experience 1
Analysis method Analytic model Example 2
Analysis method Tool Analysis 1
Eval of instance Specific analysis Analysis 3
Eval of instance Specific analysis Example 2

6. Does the abstract matter?
The abstracts of papers submitted to ICSE convey a

sense of the kinds of research submitted to the conference.
Some abstracts were easier to read and (apparently) more
informative than others. Many of the clearest abstracts had
a common structure:

♦ Two or three sentences about the current state of the
art, identifying a particular problem

♦ One or two sentences about what this paper
contributes to improving the situation

♦ One or two sentences about the specific result of the
paper and the main idea behind it

♦ A sentence about how the result is demonstrated or
defended

Abstracts in roughly this format often explained clearly
what readers could expect in the paper.

Acceptance rates were highest for papers whose
abstracts indicate that analysis or experience provides
evidence in support of the work. Decisions on papers were
made on the basis of the whole papers, of course, not just
the abstracts—but it is reasonable to assume that the
abstracts reflect what's in the papers.

Whether you like it or not, people judge papers by their
abstracts and read the abstract in order to decide whether
to read the whole paper. It's important for the abstract to
tell the story. Don't assume, though, that simply adding a
sentence about analysis or experience to your abstract is
sufficient; the paper must deliver what the abstract
promises

7. Questions you might ask about this report

7.1. Is this a sure-fire recipe?
No, not at all. First, it's not a recipe. Second, not all

software engineers share the same views of interesting and
significant research. Even if your paper is clear about
what you’ve done and what you can conclude, members of
a program committee may not agree about how to
interpret your result. These are usually honest technical
disagreements, and committee members will try hard to
understand what you have done. You can help by
explaining your work clearly; this report should help you
do that.

7.2 Is ICSE different from other conferences?
ICSE recognizes several distinct types of technical

papers [6]. For 2002, they were published separately in
the proceedings

Several other conferences offer "how to write a paper"
advice:

In 1993, several OOPSLA program committee veterans
gave a panel on "How to Get a Paper Accepted at
OOPSLA" [9]. This updated the 1991 advice for the same
conference [14]

SIGSOFT offers two essays on getting papers
accepted, though neither was actually written for a
software engineering audience. They are "How to Have
Your Abstract Rejected" [26] (which focuses on
theoretical papers) and "Advice to Authors of Extended
Abstracts", which was written for PLDI. [16].

Rather older, Levin and Reddell, the 1983 SOSP
(operating systems) program co-chairs offered advice on

writing a good systems paper [11]. USENIX now provides
this advice to its authors. Also in the systems vein,
Partridge offers advice on "How to Increase the Chances
Your Paper is Accepted at ACM SIGCOMM" [15].

SIGCHI offers a "Guide to Successful Papers
Submission" that includes criteria for evaluation and
discussion of common types of CHI results, together with
how different evaluation criteria apply for different types
of results [13]. A study [8] of regional factors that affect
acceptance found regional differences in problems with
novelty, significance, focus, and writing quality.

In 1993, the SIGGRAPH conference program chair
wrote a discussion of the selection process, "How to Get
Your SIGGRAPH Paper Rejected" [10]. The 2003
SIGGRAPH call for papers [21] has a description of the
review process and a frequently-asked questions section
with an extensive set of questions on "Getting a Paper
Accepted".

7.3. What about this report itself?
People have asked me, "what would happen if you

submitted this to ICSE?" Without venturing to predict
what any given ICSE program committee would do, I note
that as a research result or technical paper (a "finding" in
Brooks' sense [3]) it falls short in a number of ways:

♦ There is no attempt to show that anyone else can
apply the model. That is, there is no demonstration of
inter-rater reliability, or for that matter even
repeatability by the same rater.

♦ The model is not justified by any principled analysis,
though fragments, such as the types of models that
can serve as results, are principled. In defense of the
model, Bowker and Starr [2] show that useful
classifications blend principle and pragmatic
descriptive power.

♦ Only one conference and one program committee is
reflected here.

♦ The use of abstracts as proxies for full papers is
suspect.

♦ There is little discussion of related work other than
the essays about writing papers for other
conferences. Although discussion of related work
does appear in two complementary papers [19, 20],
this report does not stand alone.

On the other hand, I believe that this report does meet
Brooks' standard for "rules of thumb" (generalizations,
signed by the author but perhaps incompletely supported
by data, judged by usefulness and freshness), and I offer it
in that sense.

8. Acknowledgements
This work depended critically on access to the entire

body of submitted papers for the ICSE 2002 conference,

which would not have been possible without the
cooperation and encouragement of the ICSE 2002
program committee. The development of these ideas has
also benefited from discussion with the ICSE 2002
program committee, with colleagues at Carnegie Mellon,
and at open discussion sessions at FSE Conferences. The
work has been supported by the A. J. Perlis Chair at
Carnegie Mellon University.

9. References
1. Victor R. Basili. The experimental paradigm in software

engineering. In Experimental Software Engineering
Issues: Critical Assessment and Future Directives. Proc
of Dagstuhl-Workshop, H. Dieter Rombach, Victor R.
Basili, and Richard Selby (eds), published as Lecture
Notes in Computer Science #706, Springer-Verlag 1993.

2. Geoffrey Bowker and Susan Leigh Star: Sorting Things
Out: Classification and Its Consequences. MIT Press,
1999

3. Frederick P. Brooks, Jr. Grasping Reality Through
Illusion—Interactive Graphics Serving Science. Proc
1988 ACM SIGCHI Human Factors in Computer
Systems Conf (CHI '88) pp. 1-11.

4. Rebecca Burnett. Technical Communication. Thomson
Heinle 2001.

5. Thomas F. Gieryn. Cultural Boundaries of Science:
Credibility on the line. Univ of Chicago Press, 1999.

6. ICSE 2002 Program Committee. Types of ICSE papers.
http://icse-conferences.org/2002/info/paperTypes.html

7. Impact Project. "Determining the impact of software
engineering research upon practice. Panel summary,
Proc. 23rd International Conference on Software
Engineering (ICSE 2001), 2001

8. Ellen Isaacs and John Tang. Why don't more non-North-
American papers get accepted to CHI?
http://acm.org/sigchi/bulletin/1996.1/isaacs.html

9. Ralph E. Johnson & panel. How to Get a Paper Accepted
at OOPSLA. Proc OOPSLA'93, pp. 429-436,
http://acm.org/sigplan/oopsla/oopsla96/how93.html

10. Jim Kajiya. How to Get Your SIGGRAPH Paper
Rejected. Mirrored at
http://www.cc.gatech.edu/student.services/phd/phd-advice/kajiya

11. Roy Levin and David D. Redell. How (and How Not) to
Write a Good Systems Paper. ACM SIGOPS Operating
Systems Review, Vol. 17, No. 3 (July, 1983), pages 35-
40. http://ftp.digital.com/pub/DEC/SRC/other/SOSPadvice.txt

12. William Newman. A preliminary analysis of the products
of HCI research, using pro forma abstracts. Proc 1994

ACM SIGCHI Human Factors in Computer Systems Conf
(CHI '94), pp.278-284.

13. William Newman et al. Guide to Successful Papers
Submission at CHI 2001. http://acm.org/sigs/sigchi/
chi2001/call/submissions/guide-papers.html

14. OOPSLA '91 Program Committee. How to get your paper
accepted at OOPSLA. Proc OOPSLA'91, pp.359-363.
http://acm.org/sigplan/oopsla/oopsla96/how91.html

15. Craig Partridge. How to Increase the Chances your Paper
is Accepted at ACM SIGCOMM.
http://www.acm.org/sigcomm/conference-misc/author-guide.html

16. William Pugh and PDLI 1991 Program Committee.
Advice to Authors of Extended Abstracts.
http://acm.org/sigsoft/conferences/pughadvice.html

17. Samuel Redwine, et al. DoD Related Software
Technology Requirements, Practices, and Prospects for
the Future. IDA Paper P-1788, June 1984.

18. S. Redwine & W. Riddle. Software technology
maturation. Proceedings of the Eighth International
Conference on Software Engineering, May 1985, pp.
189-200.

19. Mary Shaw. The coming-of-age of software architecture
research. Proc. 23rd Int'l Conf on Software Engineering
(ICSE 2001), pp. 656-664a.

20. Mary Shaw. What makes good research in software
engineering? Presented at ETAPS 02, appeared in
Opinion Corner department, Int'l Jour on Software Tools
for Tech Transfer, vol 4, DOI 10.1007/s10009-002-0083-
4, June 2002.

21. SigGraph 2003 Call for Papers.
http://www.siggraph.org/s2003/cfp/papers/index.html

22. W. F. Tichy, P. Lukowicz, L. Prechelt, & E. A. Heinz.
"Experimental evaluation in computer science: A
quantitative study." Journal of Systems Software, Vol.
28, No. 1, 1995, pp. 9-18.

23. Walter F. Tichy. "Should computer scientists experiment
more? 16 reasons to avoid experimentation." IEEE
Computer, Vol. 31, No. 5, May 1998

24. Marvin V. Zelkowitz and Delores Wallace. Experimental
validation in software engineering. Information and
Software Technology, Vol 39, no 11, 1997, pp. 735-744.

25. Marvin V. Zelkowitz and Delores Wallace. Experimental
models for validating technology. IEEE Computer, Vol.
31, No. 5, 1998, pp.23-31.

26. Mary-Claire van Leunen and Richard Lipton. How to
have your abstract rejected.
http://acm.org/sigsoft/conferences/vanLeunenLipton.html

